Skip to main content
Log in

Effect of fiber volume fraction on longitudinal tensile properties of SiCf/Ti-6Al-4V composites

  • Advanced materials
  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

The longitudinal tensile properties of SiCf/Ti-6Al-4V composites with different fiber volume fractions were simulated by the Monte Carlo 2-D finite element model. The random distribution of fiber strength was expressed by the two-parameter Weibull function. Meanwhile, contact elements and birth-death elements were used to describe the interfacial sliding process after debonding and fiber breakage (or matrix cracking) respectively, which was realized by subroutine complied in ANSYS-APDL (ANSYS Parametric Design Language). The experimental results show that the yield stress and ultimate tensile strength of SiCf/Ti-6Al-4V composites increase with increasing fiber volume fraction, while the corresponding strain of them is just on the contrary. In addition, almost the same failure mode is obtained in SiCf/Ti-6Al-4V composites with various fiber volume fractions when the interfacial shear strength is fixed. Finally, the tensile strength predicted by finite element analysis is compared with that predicted by Global load-sharing model, Local load-sharing model and conventional rule of mixtures, thus drawing the conclusion that Local load-sharing model is very perfect for the prediction of the ultimate tensile strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang SP, Li GD, An LP, et al. Design Technology for Fiber Reinforced TMC Bling [J]. Gas Turbine Exp. Res., 2015, 28: 45–48

    Google Scholar 

  2. Yang YQ, Zhu Y, Chen Y, et al. Processing and Property of SiC Fiber Reinforced Ti-matrix Composite[J]. Rare Metal. Eng., 2002, 31: 201–204

    Google Scholar 

  3. Ramamurty U. Assessment of Load Transfer Characteristics of a Fiber-Reinforced Titanium-Matrix Composites[J]. Compos. Sci. Technol., 2005, 65: 1815–1825

    Article  Google Scholar 

  4. Thomas MP, Winstone MR. Effect of Matrix Alloy on Longitudinal Tensile Behaviour of Fibre Reinforced Titanium Matrix Composites[J]. Scripta Mater., 1997, 37: 1855–1862

    Article  Google Scholar 

  5. Akira F, Chikara F, Yutaka K, et al. Effect of Interfcial Properties on Tensile Strength in SiC/Ti-15–3 Composites[J]. Mater. Sci. Eng. A, 2000, 276: 243–249

    Article  Google Scholar 

  6. Jacobs E, Verpoest I. Finite Element Modeling of Damage Development during Longitudinal Tensile Loading of Coated Fibre Composites[J]. Compos. Part. A, 1998, 29: 1007–1012

    Article  Google Scholar 

  7. Liu PF, Zheng JY. A Monte Carlo 2D Finite Element Simulation of Damage and Failure in SiC/Ti-Al Composites[J]. Mater. Sci. Eng. A, 2006, 425: 260–267

    Article  Google Scholar 

  8. Ananth CR, Voleti SR, Chandra N. Effect of Fiber Fracture and Interfacial Debonding on the Evolution of Damage in Metal Matrix Composites[J]. Compos. Part. A, 1998, 29: 1203–1211

    Article  Google Scholar 

  9. Arnold SM, Arya VK, Melis ME. Reduction of Thermal Stresses in Advanced Metallic Composites based upon a Compensating/Compliant Layer Concept[J]. J. Compos. Mater., 1992, 26: 1287–1309

    Article  Google Scholar 

  10. Zhang RJ, Yang YQ, Shen WT. Preparation and Tensile Test of SiC Fiber Fabricated by Three-Stage Chemical Vapour Deposition[J]. J. Inorg. Mater., 2010, 25: 840–844

    Article  Google Scholar 

  11. Schuler S, Derby B, Wood M. Matrix Flow and Densification during the Consolidation of Matrix Coated Fibers[J]. Acta Mater., 2000, 48: 1247–1258

    Article  Google Scholar 

  12. Ma ZJ, Yang YQ, Lu XH, et al. The Effect of Matrix Creep Property on the Consolidation Process of SiC/Ti-6Al-4V Composite[J]. Mater. Sci. Eng. A, 2006, 433: 343–346

    Article  Google Scholar 

  13. Coleman BD. On the Strength of Classical Fibers and Fiber Bundles[J]. J. Mech. Phys. Solids, 1958, 7: 60–70

    Article  Google Scholar 

  14. Yuan MN, Yang YQ, Li JK, et al. A New Method to Assess the Interface Strength for Titanium Matrix Composites Using Fiber Push Out Test [J]. Rare Metal Eng, 2008, 37: 779–783

    Google Scholar 

  15. Warrier SG, Gundel DB, Majumdar BS, et al. Stress Distribution in a Transversely Loaded Cross-Shaped Single Fiber SCS-6/Ti-6Al-4V Composite[J]. Scripta Mater., 1996, 34: 293–299

    Article  Google Scholar 

  16. Lou JH, Yang YQ, Li J, et al. Study on Longitudinal Tensile Properties of SiCf/Ti-6Ai-4V Composites with Different Interfacial Shear Strength[J]. Mater. Sci. Eng. A, 2011, 529: 88–93

    Article  Google Scholar 

  17. Ismar H, Streicher. Modelling and Simulation of the Mechanical Behaviour of Ceramic Matrix Composites as Shown by the Example of SiC/SiC[J]. Comput. Mater. Sci., 1999, 16: 17–24

    Article  Google Scholar 

  18. Gundel DB, Wawner FE. Experimental and Theoretical Assessment of the Longitudinal Tensile Strength of Unidirectional SiC-Fiber/Titanium-Matrix Composites[J]. Compos. Sci. Technol., 1997, 57: 471–481

    Article  Google Scholar 

  19. Curtin WA. Theory of Mechanical Properties of Ceramic-Matrix Composites[J]. J. Am. Ceram. Soc., 1991, 74: 2837–2845

    Article  Google Scholar 

  20. Curtin WA. Ultimate strengths of fiber-reinforced ceramics and metals[J]. Composites, 1993, 24: 98–102

    Article  Google Scholar 

  21. Ibnabdeljalil M, Curtin WA. Strength and Reliability of Fiber-Reinforced Composites: Localized Load-Sharing and Associated Size Effect[J]. Int. J. Solids Structure, 1997, 34: 2649–2668

    Article  Google Scholar 

  22. Foster GC, Ibnabdeljalil M, Curtin WA. Tensile Strength of Titanium Matrix Composites: Direct Numerical Simulations and Analytic Models[J]. Int. J. Solids Structures, 1998, 35: 2523–2536

    Article  Google Scholar 

  23. Thomas MP, Winstone MR. Longitudinal Yielding Behavior of SiCFiber-Reinforced Titanium-Matrix Composites[J]. Compos. Sci. Technol., 1999, 59: 297–303

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juhong Lou  (娄菊红).

Additional information

Funded by the National Natural Science Foundation of China (51271147)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lou, J., Yang, Y. & Liu, S. Effect of fiber volume fraction on longitudinal tensile properties of SiCf/Ti-6Al-4V composites. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 32, 278–283 (2017). https://doi.org/10.1007/s11595-017-1592-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-017-1592-z

Key words

Navigation