Skip to main content
Log in

Structural and electrochemical performances of α-MnO2 doped with tin for supercapacitors

  • Advanced materials
  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

To improve the electrochemical performances of α-MnO2 as electrode materials for supercapacitors, Sn-doped α-MnO2 in the presence of the doping amount of 1%-4% was successfully synthesized by hydrothermal method. As-prepared α-MnO2 presents nanorod shape and no other impurities exist. By ultraviolet-visible absorption spectroscopy, it is convinced that the band gaps of α-MnO2 decrease with increasing Sn-doping amount. Cyclic voltammetry investigation indicates that undoped and doped α-MnO2 all have regular capacitive response. As the scan rate enlarged, the profiles of curves gradually deviate from rectangle. Compared with undoped α-MnO2, doped α-MnO2 has larger specific capacitance. The specific capacitance of 3% doped α-MnO2 reaches 241.0 F/g while undoped α-MnO2 only has 173.0 F/g under 50 mA/ g current density in galvanostatical charge-discharge measurement. Enhanced conductivity by Sn-doping is considered to account for doped sample’s enhanced electrochemical specific capacitance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pognon G, Cougnon C, Mayilukila D, et al. Catechol-modified Activated Carbon Prepared by the Diazonium Chemistry for Application as Active Electrode Material in Electrochemical Capacitor[J]. Acs. Appl. Mater. & Inter., 2012, 4: 3788–3796

    Article  Google Scholar 

  2. Luo JY, Xia YY. The Effect of Oxygen Vacancies on the Structure and Electrochemistry of LiTi2 (PO4)3 for Lithium-ion Batteries: A Aombined Experimental and Theoretical Study[J]. J.Power Sources, 2009, 186: 224–227

    Article  Google Scholar 

  3. Ma C, Song Y, Shi J, et al. Preparation and One-step Activation of Microporous Carbon Nanofibers for Use as Supercapacitor Electrodes[J]. Carbon, 2013, 51: 290–300

    Article  Google Scholar 

  4. Razaq A, Nyholm L, Sjodin M. Paper-Based Energy-Storage Devices Comprising Carbon Fiber-Reinforced Polypyrrole-Cladophora Nanocellulose Composite Electrodes[J]. Adv.Energy Mater., 2012, 2: 445–454

    Article  Google Scholar 

  5. Li X, Zhitomirsky I. Electrodeposition of Polypyrrole-carbon Nanotube Composites for Electrochemical Supercapacitors[J]. J.Power Sources, 2013, 221: 49–56

    Article  Google Scholar 

  6. Wang X, Han X, Lim M, et al. Nickel Cobalt Oxide-single Wall Carbon Nanotube Composite Material for Superior Cycling Stability and High-performance Supercapacitor Application[J]. Phys. Chem. C, 2012, 116: 12448–12454

    Article  Google Scholar 

  7. Jin Y, Jia M, Zhang M, et al. Preparation of Stable Aqueous Dispersion of Graphene Nanosheets and Their Electrochemical Capacitive Properties[J]. Appl. Surf. Sci., 2013, 264: 787–793

    Article  Google Scholar 

  8. Zhou Z, Wu XF. Graphene-beaded Carbon Nanofibers for Use in Supercapacitor Electrodes: Synthesis and Electrochemical Characterization[J]. J.Power Sources, 2013, 222: 410–416

    Article  Google Scholar 

  9. Yan MY, Wang FC, Han CH, et al. Nanowire Templated Semihollow Bicontinuous Graphene Scrolls: Designed Construction, Mechanism, and Enhanced Energy Storage Performance[J]. J. Am. Chem. Soc., 2013, 135 (48): 18176–18182

    Article  Google Scholar 

  10. Xia H, Meng YS, Yuan G, Cui C, Luc L. A Symmetric RuO2/RuO2 Supercapacitor Operating at 1.6 V by Using a Neutral Aqueous Electrolyte[J]. Electrochem. Solid ST., 2012, 15: A60–63

    Article  Google Scholar 

  11. Patil UM, Kulkarni SB, Jamadade VS, et al. Chemically Synthesized Hydrous RuO2 Thin Films for Supercapacitor Application[J]. J.Alloy Compd., 2011, 509: 1677–1682

    Article  Google Scholar 

  12. He L, Li ZC, Zhang ZJ. Rapid, Low-temperature Synthesis of Single-crystalline Co3O4 Nanorods on Silicon Substrates on a Large Scale[J]. Nanotechnology, 2008, 19: 155606

    Article  Google Scholar 

  13. Yousefi T, Golikand AN, Mashhadizadeh MH, et al. High Temperature and Low Current Density Synthesis of Mn3O4 Porous Nano Spheres: Characterization and Electrochemical Properties[J]. Curr. Appl. Phys., 2012, 12: 193–198

    Article  Google Scholar 

  14. Zang J, Li X. Strongly Green-photoluminescent Graphene Quantum Dots for Bioimaging Bpplications[J]. J. Mater. Chem., 2011, 21: 10965–10969

    Article  Google Scholar 

  15. Soundararajan D, Kim YI, Kim J-H, et al. Hydrothermal Synthesis and Electrochemical Characteristics of Crystalline α-MnO2 Nanotubes[J]. Sci. Adv. Mater., 2012, 4: 805–812

    Article  Google Scholar 

  16. Perret PG, Malenfant PRL, Bock C, et al. Electro-deposition and Dissolution of MnO2 on a Graphene Composite Electrode for Its Utilization in an Aqueous Based Hybrid Supercapacitor[J]. J.Electrochem Soc., 2012, 159: A1554–1561

    Article  Google Scholar 

  17. Zhao J, Lu Z, Shao M, et al. Hierarchical Layered Double Hydroxide Microspheres with Largely Enhanced Performance for Ethanol Electrooxidation[J]. Rsc. Adv., 2013, 3: 1045–1049

    Article  Google Scholar 

  18. Zhi M, Manivannan A, Meng F, et al. Highly Conductive Electrospun Carbon Nanofiber/MnO2 Coaxial Nano-cables for High Energy and Power Density Supercapacitors[J]. J.Power Sources, 2012, 208: 345–353

    Article  Google Scholar 

  19. Wang G, Shao G, Du J, et al. Electrochemical Performance of Modoped LiFePO4/C Composites Prepared by Two-step Solid-state Reaction[J]. Mater Chem. Physics., 2013, 138: 108–113

    Article  Google Scholar 

  20. Hashem AM, Abuzeid HM, Mikhailova D, et al. Structural and Electrochemical Properties of a-MnO2 Doped with Cobalt[J]. Mater Sci., 2012, 47: 2479–2485

    Article  Google Scholar 

  21. Dubal DP, Lokhande CD. Significant Improvement in the Electrochemical Performances of Nano-nest Like Amorphous MnO2 Electrodes Due to Fe Doping[J]. Ceram. Int., 2013, 39: 415–423

    Article  Google Scholar 

  22. Ryu WH, Han DW, Kim WK, et al. Control Synthesis and Lithium ion Battery Performance of Manganese Dioxide Nanowires with Tunable Structures but Similar Morphology[J]. Nanopart Res., 2011, 13: 4777–4784

    Article  Google Scholar 

  23. Hashem AM, Abuzeid HM, Narayanan N, et al. Synthesis, Structure, Magnetic, Electrical and Electrochemical Properties of Al, Cu and Mg doped MnO2[J]. Mater Chem. Phys., 2011, 130: 33–38

    Article  Google Scholar 

  24. Wang S, Liu Q, Yu J, et al. Anisotropic Expansion and High Rate Discharge Performance of V-doped MnO2 for Li/MnO2 Primary Battery[J]. Int J Electrochem Sci., 2012, 7: 1242–1250

    Google Scholar 

  25. Kunkalekar RK, Salker AV. Activity of Pd Doped and Supported Mn2O3 Nanomaterials for CO Oxidation[J]. React. Kinet. Mech. Cat., 2012, 106: 395–405

    Article  Google Scholar 

  26. Hashem AM, Abdel-Latif AM, Abuzeid HM, et al. Improvement of the Tlectrochemical Performance of Nanosized a-MnO2 Used as Cathode Material for Li-batteries by Sn-doping[J]. J.Alloy Compd., 2011, 509: 9669–9674

    Article  Google Scholar 

  27. Malankar H, Umare SS, Singh K. Room Temperature Synthesis of Lidoped MnO2 and Its Electrochemical Activity[J]. J.Mater Lett., 2009, 63: 2016–2018

    Article  Google Scholar 

  28. Norihito IT K, Kenichi O, Fujio I, et al. Crystal Structure of an Open-tunnel Oxide a-MnO2 Analyzed by Rietveld Refinements and MEM-based Pattern Fitting[J]. Solid State Chem., 2004, 177: 1258–1267

    Article  Google Scholar 

  29. Xun WLYD. Rare-earth-compound Nanowires, Nanotubes, and Fullerene-like Nanoparticles: Synthesis, Characterization, and Properties[J]. Chem-Eur. J., 2003, 9: 300–306

    Article  Google Scholar 

  30. Han YF, Zhong ZY, Ramesh K, et al. Controlled Synthesis, Characterization, and Catalytic Properties of Mn2O3 and Mn3O4 Nanoparticles Supported on Mesoporous Silica SBA-15[J]. Phys. Chem. B, 2006, 110: 24450–24456

    Article  Google Scholar 

  31. Duan YD, Zhang QZ, Fang YY, et al. Influence of Sn Source on the Performance of Dye-sensitized Solar Cells Based on Sn-doped TiO2 Photoanodes: A Strategy for Choosing an Appropriate Doping Source[J]. Electrochim Acta, 2013, 107: 473–480

    Article  Google Scholar 

  32. Liu M, Shen ZR, Sun PC, et al. Synthesis and Characterization of Hierarchically Structured Mesoporous MnO2 and Mn2O3[J]. Solid State Sci., 2009, 11: 118–128

    Article  Google Scholar 

  33. Sakai N, Takada K, Sasaki T. Photocurrent Generation from Semiconducting Manganese Oxide Nanosheets in Response to Visible Light[J]. Phys. Chem. B, 2005, 109: 9651–9655

    Article  Google Scholar 

  34. Barakat NAM, Woo KD, Ansari SG, et al. Preparation of Nanofibers Consisting of MnO/Mn3O4 by Using the Electrospinning Technique: the Nanofibers Have Two Band-gap Energies[J]. Appl. Phys. A-Mater., 2009, 95: 769–776

    Article  Google Scholar 

  35. Rodrigues S, Munichandraiah N, Shukla AK. A Review of State-ofcharge Indication of Batteries by means of ac Impedance Measurements[J]. J.Power Sources, 2000, 87: 12–20

    Article  Google Scholar 

  36. Kang J, Hirata A, Kang LJ, et al. Enhanced Supercapacitor Performance of MnO2 by Atomic Doping[J]. Chem. Int. Ed., 2013, 52: 1664–1667

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Li  (黎阳).

Additional information

Funded by The National Natural Science Foundation of China (51402185) and the Natural Science Foundation of Shanghai (13ZR1454700)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Li, J., Xie, H. et al. Structural and electrochemical performances of α-MnO2 doped with tin for supercapacitors. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 32, 237–244 (2017). https://doi.org/10.1007/s11595-017-1586-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-017-1586-x

Key words

Navigation