Skip to main content
Log in

Ab initio study of tunable band gap of monolayer and bilayer phosphorene by the vertical electronic field

  • Biomaterials
  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

Using the ab initio plane-wave ultrasoft pseudopotential method based on generalized gradient approximation (GGA), we investigated the band-gap tuning in monolayer phosphorene (MLP) and bilayer phosphorene (BLP) by external electric fields applied perpendicular to the layers. The band continuously decreases with increasing applied electric fields, eventually rendering them metallic. For MLP, the phenomenon is explained in the light of the giant Stark effect, which is essentially characterized by the interlayer spacing, for the rate of change of bandgap with applied external field. The atomic distance and charges also contribute to the semiconductor-metal transition. The BLP is more sensitive to electric fields than MLP, since their charges are rearranged among bilayers and the bandgap can dramatically drop in terms of electronic field. The results show the bandgap will change for the fabrication of novel electronic and photonic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liu H, Neal A T, Zhu Z, et al. Phosphorene: An Unexplored 2D Semiconductor with a High Hole Mobility[J]. ACS Nano, 2014, 8(4): 4033–4041

    Article  Google Scholar 

  2. Li L K, Yu Y J, Ye G J, et al. Black Phosphorus Field-effect Transistors [J]. Nature Nanotech., 2014, 9(5): 372–377

    Article  Google Scholar 

  3. Prytz O, Flage-Larsen E. The Influence of Exact Exchange Corrections in Van Der Waals Layered Narrow Bandgap Black Phosphorus[J]. J. Phys.: Condens. Matter., 2010, 22(1): 015502

    Google Scholar 

  4. Maruyama Y, Suzuki S, Kobayashi K, et al. Synthsis and some Properties of Black Phosphorus Single-crystals[J]. Physica B & C, 1981, 105(1-3): 99–102

    Article  Google Scholar 

  5. Morita A. Semiconducting Black Phosphorus[J]. Appl. Phys. A, 1986, 39(4): 227–242

    Article  Google Scholar 

  6. Keyes R W. The Electrical Properties of Black Phosphorus[J]. Phys. Rev., 1953, 92: 580–584

    Article  Google Scholar 

  7. Du Y, Ouyang C Y, Shi S Q, el al. Ab initio Studies on Atomic and Electronic Structures of Black Phosphours[J]. J. Appl. Phys., 2010, 107(9): 093718

    Article  Google Scholar 

  8. Takao Y, Morita A. Electronic Structure of Black Phosphorus: Tight Binding Approach[J]. Physica B & C, 1981, 105(1-3): 93–98

    Article  Google Scholar 

  9. Das S, Zhang W, Demarteau M, et al. Tunable Transport Gap in Phosphorene[J]. Nano Lett., 2014, 14(10): 5733–5739

    Article  Google Scholar 

  10. Qiao J S, Kong X H, Hu Z X, et al. High-mobility Transport Anisotropy and Linear Dichroism in Few-layer Black Phosphorus[J]. Nat. Commun., 2014, 5: 4475

    Google Scholar 

  11. Segall M D, Lindan P L, Probert M J, et al. First-principles Simulation: Ideas, Illustrations and the CASTEP Code[J]. J. Phys.: Condens Matt., 2002, 14(11): 2717–2744

    Google Scholar 

  12. Perdew J P, Burke K, Ernzerhof M. Generalized Gradient Approximation Made Simple[J]. Phys. Rev. Lett., 1996, 77(18): 3865–3868

    Article  Google Scholar 

  13. Zheng F W, Liu Z R, Wu J, et al. Scaling Law of the Giant Stark Effect in Boron Nitride Nanoribbons and Nanotubes[J]. Phys. Rev. B, 2008, 78(8): 085423

    Article  Google Scholar 

  14. Khoo K H, Mazzoni S C, Louie S G. Tuning the Electronic Properties of Boron Nitride Nanotubes with Transverse Electric Fields: A Giant DC Stark Effect[J]. Phys. Rev. B, 2004, 69(20): 201401

    Article  Google Scholar 

  15. Ishigami M, Sau J D, Aloni S, et al. Observation of the Giant Stark Effect in Boron-Nitride Nanotubes[J]. Phys.Rev. Lett., 2005, 94(5): 056804

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bin Zhang  (张斌) or You Yin  (尹友).

Additional information

Funded by National Natural Science Foundation of China (No. 61176101), the Ph D Programs Foundation of Ministry of Education of China (No. 20120101120156) and Key Laboratory of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences (No. 14JG01)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, T., Guo, W., Wen, L. et al. Ab initio study of tunable band gap of monolayer and bilayer phosphorene by the vertical electronic field. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 32, 213–216 (2017). https://doi.org/10.1007/s11595-017-1582-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-017-1582-1

Key words

Navigation