Skip to main content
Log in

Preparation and characterization of single-handed helical carbonaceous nanofibers using 1,4-phenylene bridged polybissilsesquioxanes

  • Organic materials
  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

Single-handed helical carbonaceous materials attracted much attention for varieties of potential applications. Herein, single-handed helical 1, 4-phenylene bridged polybissilsesquioxane nanofibers were prepared through a supramolecular templating approach using a pair of enantiomers. After carbonization at 700 °C for 2.0 h and removal of silica using HF aqueous solution, single-handed helical carbonaceous nanofibers were obtained. The obtained samples were characterized using the field-emission scanning electron microscopy, transmission electron microscopy, N2 sorptions, X-ray diffraction, Raman spectroscopy and diffuse reflectance circular dichroism (DRCD). The Raman spectrum indicated that the carbon was amorphous. The DRCD spectra indicated that the carbonaceous nanofibers exhibited optical activity. The surface area of the left-handed helical carbonaceous nanofibers was 907 m2/g. Such material has potential applications as chirality sensor and supercapacitor electrode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Qin Y, Yu L, Wang Y, et al. Amorphous Helical Carbon Nanofibers Synthesized at Low Temperature and Their Elasticity and Processablity[J]. Solid State Commun., 2006, 138(1): 5–8

    Article  Google Scholar 

  2. Chen X Q, Yang S M, Motojima S, et al. Morphology and Microstructure of Twisting Nano-Ribbons Prepared Using Sputter-Coated Fe-Base Alloy Catalysts on Glass Substrates[J]. Mater. Lett., 2005, 59(7): 854–858

    Article  Google Scholar 

  3. Allen C S, Zhang C, G Burnell, et al. A Review of Methods for the Accurate Determination of the Chiral Indices of Carbon Nanotubes from Electron Diffraction Patterns[J]. Carbon, 2011, 49: 4961–4971

    Article  Google Scholar 

  4. T Yu, Y Gong, T Lu, et al. Recognition of Carbon Nanotube Chirality by Phage Display[J]. RSC Adv., 2012, 2: 1466–1476

    Article  Google Scholar 

  5. Neihsial S, Periyasamy G, Samanta P K, et al. Understanding the Binding Mechanism of Various Chiral SWCNTs and ssDNA: a Computational Study[J]. J. Phys. Chem. B, 2012, 116(51): 14754–14759

    Article  Google Scholar 

  6. Chung W, Nobusawa K, Kamikubo H, et al. Improving the Second-Order Nonlinear Optical Response of Fluorescent Proteins: The Symmetry Argument[J]. J. Am. Chem. Soc., 2013, 135(10): 4061–4069

    Article  Google Scholar 

  7. Li X L, Tu X M, Zaric S, et al. Selective Synthesis Combined with Chemical Separation of Single-Walled Carbon Nanotubes for Chirality Selection[J]. J. Am. Chem. Soc., 2007, 129(51): 15770–15771

    Article  Google Scholar 

  8. Yang W, Sun W J, Chu W, et al. Synthesis of Carbon Nanotubes Using Scrap Tyre Rubber as Carbon Source[J]. Chin. Chem. Lett., 2012, 23(3): 363–366

    Article  Google Scholar 

  9. Chen Y, Wei L, Wang B, et al. Low-Defect, Purified, Narrowly (n,m)-dispersed Single-walled Carbon Nanotubes Grown from Cobalt-Incorporated MCM-41[J]. ACS Nano, 2007, 1(4): 327–336

    Article  Google Scholar 

  10. Zhang X L, Chu X L, Wang L, et al. Rational Design of a Tetrameric Protein to Enhance Interactions between Self-Assembled Fibers Gives Molecular Hydrogels[J] Angew. Chem. Int. Ed., 2012, 51(18): 4388–4392

    Article  Google Scholar 

  11. Xu Q H, Moreau J J E, Wong Chi Man M J. Influence of Alkylene Chain Length on the Morphology of Chiral Bridged Silsesquioxanes[J]. Sol-Gel Sci. & Technol., 2004, 32(1): 111–115

    Google Scholar 

  12. Shimizu T, Masuda M, Minamikawa H. Supramolecular Nanotube Architectures Based on Amphiphilic Molecules[J]. Cheminform, 2005, 36(32): 1401–1443

    Article  Google Scholar 

  13. Li B Z, Chen Y L, Zhao H, et al. From Branched Self-Assemblies to Branched Mesoporous Silica Nanoribbons[J]. Chem. Commun., 2008, 6366–6368

    Google Scholar 

  14. Wu X J, Ji S J, Li Y, et al. Helical Transfer through Nonlocal Interactions[J]. J. Am. Chem. Soc., 2009, 131(16): 5986–5993

    Article  Google Scholar 

  15. Fan C X, Qiu H B, Ruan J F, et al. Formation of Chiral Mesopores in Conducting Polymers by Chiral-Lipid-Ribbon Templating and “Seeding” Route[J]. Adv. Funct. Mater., 2008, 18(18): 2699–2707

    Article  Google Scholar 

  16. C Y Zhang, S B Wang, H J Huo, et al. Preparation of Helical Mesoporous Tantalum Oxide Nanotubes through a Sol-Gel Transcription Approach[J]. Chem. Asian J., 2013, 8: 709–712

    Article  Google Scholar 

  17. Li H T, Li B Z, Chen Y L, et al. Preparetion of Chiral 4,4-Biphenylene-Silica Nanoribbons[J]. Chin. J. Chem. 2009, 27(10): 1860–1862

    Article  Google Scholar 

  18. Liu S H, Duan Y Y, Feng X J, et al. Synthesis of Enantiopure Carbonaceous Nanotubes with Optical Activity[J]. Angew. Chem. Int. Ed., 2013, 52(27):6858–6862

    Article  Google Scholar 

  19. Zhang C Y, Li Y, Li B Z, et al. Preparation of Single-handed Helical Carbon/silica and Carbonaceous Nanotubes by Using 4, 4-Biphenylene Bridged Polybissilsesquioxane[J]. Chem. Asian J. 2013, 8(11): 2714–2720

    Article  Google Scholar 

  20. Wu Z W, Pang J B, Lu Y F. Synthesis of Highly-ordered Mesoporous Carbon/silica Nanocomposites and Derivative Hierarchically Mesoporous Carbon from a Phenyl-bridged Organosiloxane[J]. Nanoscale, 2009, 1(2): 245–249

    Article  Google Scholar 

  21. Suzuki M, Owa S, Yumoto M, et al. New l-Valine-Based Hydrogelators: Formation of Supramolecular Hydrogels[J]. Tetrahedron Lett., 2004, 45(28): 5399–5402

    Article  Google Scholar 

  22. McCulloch D G, Prawer S, Hoffman A. Structural Investigation of Xenon-Ion-Beam-Irradiated Glassy Carbon[J]. Phys. Rev. B, 1994, 50(9): 5905–5917

    Article  Google Scholar 

  23. Inagaki S, Guan S, Ohsuna T, et al. An Ordered Mesoporous Organosilica Hybrid Material with a Crystal-Like Wall Structure[J]. Nature, 2002, 416(6878): 304–307

    Article  Google Scholar 

  24. Lv Y Y, Zhang F, Dou Y Q, et al. A Comprehensive Study on KOH Activation of Ordered Mesoporous Carbons and Their Supercapacitor Application[J]. J. Mater. Chem., 2012, 22(1): 93–99

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baozong Li  (李宝宗).

Additional information

Funded by the National Natural Science Foundation of China (No. 21574095), the Priority Academic Program Development of Jiangsu High Education Institutions (PAPD)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, Z., Guo, Y., Li, B. et al. Preparation and characterization of single-handed helical carbonaceous nanofibers using 1,4-phenylene bridged polybissilsesquioxanes. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 31, 1149–1154 (2016). https://doi.org/10.1007/s11595-016-1504-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-016-1504-7

Keywords

Navigation