Skip to main content
Log in

Synthesis and bio-activities of poly (3,4-ethylenedioxythiophene) (PEDOT)/poly (styrene sulfonate) (PSS)/gelatin layer on indium tin oxide (ITO)-coated glass

  • Biomaterials
  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

Poly (3, 4-ethylenedioxythiophene) (PEDOT), together with its dopes, such as poly (styrene sulfonate) (PSS), has been acknowledged to have a wide range of biomedical applications as an important conducting polymer. In this study, gelatin can be polymerized into PEDOT/PSS polymers on indium tin oxide (ITO)-coated glass. PEDOT/PSS/gelatin layer on ITO-coated glass significantly decreases electrochemical impedance spectroscopy (EIS) and increases charge delivery capacity relative to the gelatin layer and bare ITO-coated glass, comparable to the PEDOT/PSS layer on ITO-coated glass. PEDOT/PSS/gelatin layer on ITO-coated glass enhances pheochromocytoma (PC 12) cell affinity, possesses a high biocompatibility and promotes PC 12 cell growth by delivery of electrical stimulation. These results suggest that gelatin can be incorporated into the PEDOT/PSS polymers through electrochemical polymerization and the PEDOT/PSS/gelatin layer on ITO-coated glass possesses high electrochemical and biological activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Poole-Warren L, Lovell N, Baek S, et al. Development of Bioactive Conducting Polymers for Neural Interfaces[J]. Expert Rev. Med. Devices, 2010, 7(1): 35–49

    Article  Google Scholar 

  2. Bendrea A D, Cianga L, Cianga I. Progress in the Field of Conducting Polymers for Tissue Engineering Applications[J]. J. Biomater. Appl., 2011, 26(1): 3–84

    Article  Google Scholar 

  3. Nambiar S, Yeow J T W. Conductive Polymer-based Sensors for Biomedical Applications[J]. Biosensors & Bioelectronics, 2011, 26(5): 1825–1832

    Article  Google Scholar 

  4. Ravichandran R, Sundarrajan S, Venugopal J R, et al. Applications of Conducting Polymers and Their Tissues in Biomedical Engineering[J]. J. R. Soc. Interface, 2010, 7 S 559–S 579

    Article  Google Scholar 

  5. Thaning E M, Asplund M L M, Nyberg T A, et al. Stability of Poly(3,4-ethylene dioxythiophene) Materials Intended for Implants[J]. J. Biomed. Mater. Res. Part B, 2010, 93B(2): 407–415

    Article  Google Scholar 

  6. Boretius T, Schuettler M, Stieglitz T. On the Stability of Polyethylenedioxythiopene as Coating Material for Active Neural Implants[J]. Artif. Organs, 2011, 35(3): 245–248

    Article  Google Scholar 

  7. Rozlosnik N. New Directions in Medical Biosensors Employing Poly(3,4-ethylenedioxy thiophene) Derivative-based Electrodes[J]. Analytical and Bioanalytical Chemistry, 2009, 395(3): 637–645

    Article  Google Scholar 

  8. Nikolou M, Malliaras G G. Applications of Poly (3,4-ethylenedioxythiophene) Doped with Poly(styrene sulfonic acid) Transistors in Chemical and Biological Sensors[J]. Chemical Record, 2008, 8(1): 13–22

    Article  Google Scholar 

  9. Chikar J A, Hendricks J L, Richardson-Burns S M, et al. The Use of a Dual PEDOT and RGD-functionalized Alginate Hydrogel Coating to Provide Sustained Drug Delivery and Improved Cochlear Implant Function[J]. Biomaterials, 2012, 33(7): 1982–1990

    Article  Google Scholar 

  10. Luo X, Matranga C, Tan S, et al. Carbon Nanotube Nanoreservior for Controlled Release of Anti-inflammatory Dexamethasone[J]. Biomaterials, 2011, 32(26): 6316–6323

    Article  Google Scholar 

  11. Wilks S J, Woolley A J, Ouyang L, et al. In Vivo Polymerization of Poly(3,4-ethylenedioxythiophene) (PEDOT) in Rodent Cerebral Cortex[C]. Conf. Proc. IEEE. Eng. Med. Biol. Soc., 2011

    Google Scholar 

  12. Hsiao Y S, Lin C C, Hsieh H J, et al. Manipulating Location, Polarity, and Outgrowth Length of Neuron-like Pheochromocytoma (PC-12) Cells on Patterned Organic Electrode Arrays[J]. Lab Chip., 2011, 11(21): 3674–3680

    Article  Google Scholar 

  13. Kim Y I, Kim H, Lee H. Effect of Solvent and Dopant on Poly(3,4-ethylenedioxythiophene) Thin Films by Atomic Force Microscope Lithography[J]. J. Nanosci. Nanotechnol., 2008, 8(9): 4757–4760

    Article  Google Scholar 

  14. Green R A, Lovell N H, Poole-Warren L A. Impact of Co-incorporating Laminin Peptide Dopants and Neurotrophic Growth Factors on Conducting Polymer Properties[J]. Acta. Biomater., 2010, 6(1): 63–71

    Article  Google Scholar 

  15. Green R A, Lovell N H, Poole-Warren L A. Cell Attachment Functionality of Bioactive Conducting Polymers for Neural Interfaces[J]. Biomaterials, 2009, 30(22): 3637–3644

    Article  Google Scholar 

  16. Li Y, Rodrigues J, Tomás H. Injectable and Biodegradable Hydrogels: Gelation, Biodegradation and Biomedical Applications[J]. Chem. Soc. Rev., 2012, 41(6): 2193–2221

    Article  Google Scholar 

  17. Sell S A, McClure M J, Garg K, et al. Electrospinning of Collagen/ Biopolymers for Regenerative Medicine and Cardiovascular Tissue Engineering[J]. Adv. Drug Deliv. Rev., 2009, 61(12): 1007–1019

    Article  Google Scholar 

  18. Young S, Wong M, Tabata Y, et al. Gelatin as a Delivery Vehicle for the Controlled Release of Bioactive Molecules[J]. J. Control Release, 2005, 109(1-3): 256–274

    Article  Google Scholar 

  19. Garg T, Singh O, Arora S, et al. Scaffold: a Novel Carrier for Cell and Drug Delivery[J]. Crit. Rev. Ther. Drug Carrier Syst., 2012, 29(1): 1–63

    Article  Google Scholar 

  20. Olsen D, Yang C, Bodo M, et al. Recombinant Collagen and Gelatin for Drug Delivery[J]. Adv. Drug Deliv. Rev., 2003, 55(12): 1547–1567

    Article  Google Scholar 

  21. Jurga M, Dainiak M B, Sarnowska A, et al. The Performance of Laminin-containing Cryogel Scaffolds in Neural Tissue Regeneration[J]. Biomaterials, 2011, 32(13): 3423–3434

    Article  Google Scholar 

  22. Martín-López E, Alonso F R, Nieto-Díaz M, et al. Chitosan, Gelatin and Poly(L-lysine) Polyelectrolyte-based Scaffolds and Films for Neural Tissue Engineering[J]. J. Biomater. Sci. Polym. Ed., 2012, 23(1-4): 207–232

    Article  Google Scholar 

  23. Martín-López E, Nieto-Díaz M, Nieto-Sampedro M. Differential Adhesiveness and Neurite-promoting Activity for Neural Cells of Chitosan, Gelatin, and Poly-L-lysine Films[J]. J. Biomater. Appl., 2012, 26(7): 791–809

    Article  Google Scholar 

  24. Ge D T, Mu J, Huang S Q, et al. Electrochemical Synthesis of Polypyrrole Nanowires in the Presence of Gelatin[J]. Synthetic Metals, 2011, 161(1-2): 166–172

    Article  Google Scholar 

  25. Green R A, Lovell N H, Wallace G G, et al. Conducting Polymers for Neural Interfaces: Challenges in Developing An Effective Long-term Implant[J]. Biomaterials, 2008, 29(24-25): 3393–3399

    Article  Google Scholar 

  26. Gomez N, Schmidt C E. Nerve Growth Factor-immobilized Polypyrrole: Bioactive Electrically Conducting Polymer for Enhanced Neurite Extension[J]. J. Biomed. Mater. Res. A, 2007, 81(1): 135–149

    Article  Google Scholar 

  27. Schmidt C E, Shastri V R, Vacanti J P, et al. Stimulation of Neurite Outgrowth Using An Electrically Conducting Polymer[J]. Proc. Natl. Acad. Sci. U S A, 1997, 94(17): 8948–8953

    Article  Google Scholar 

  28. Park K H, Jo E A, Na K. Heparin/Polypyrrole (PPy) Composite on Gold-coated Matrix for the Neurite Outgrowth of PC 12 Cells by Electrical Stimulation[J]. Biotechnology and Bioprocess Engineering, 2007, 12(5): 463–469

    Article  Google Scholar 

  29. Ibrahim M, Mahmoud A A, Osman O, et al. Molecular Spectroscopic Analyses of Gelatin[J]. Spectrochim. Acta. A. Mol. Biomol. Spectrosc., 2011, 81(1): 724–729

    Article  Google Scholar 

  30. GILES C H, McKAY R B. Studies in Hydrogen Bond Formation. XI. Reactions Between a Variety of Carbohydrates and Proteins in Aqueous Solutions[J]. J. Biol. Chem., 1962, 237: 3388–3392

    Google Scholar 

  31. Peixoto N, Jackson K, Samiyi R, et al. Charge Storage: Stability Measures in Implantable Electrodes[J]. Conf. Proc. IEEE. Eng. Med. Biol. Soc., 2009, 2009: 658–661

    Google Scholar 

  32. Blau A, Murr A, Wolff S, et al. Flexible, All-polymer Microelectrode Arrays for the Capture of Cardiac and Neuronal signals[J]. Biomaterials, 2011, 32(7): 1778–1786

    Article  Google Scholar 

  33. Lu Y, Li Y, Pan J, et al. Poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate)-poly(vinyl alcohol)/poly(acrylic acid) Interpenetrating Polymer Networks for Improving Optrode-neural Tissue Interface in Optogenetics[J]. Biomaterials, 2012, 33(2): 378–394

    Article  Google Scholar 

  34. Smeets E F, von Asmuth E J, van der Linden C J, et al. A Comparison of Substrates for Human Umbilical Vein Endothelial Cell Culture[J]. Biotech. Histochem., 1992, 67(4): 241–250

    Article  Google Scholar 

  35. Green R A, Hassarati R T, Bouchinet L, et al. Substrate Dependent Stability of Conducting Polymer Coatings on Medical Electrodes[J]. Biomaterials, 2012, 33(25): 5875–5886

    Article  Google Scholar 

  36. Xiao Y, Li C M, Wang S, et al. Incorporation of Collagen in Poly(3,4-ethylenedioxythiophene) for A Bifunctional Film with High Bio-and Electrochemical Activity[J]. J. Biomed. Mater. Res. A, 2010, 92(2): 766–772

    Article  Google Scholar 

  37. Gordon T, Udina E, Verge V M, et al. Brief Electrical Stimulation Accelerates Axon Regeneration in the Peripheral Nervous System and Promotes Sensory Axon Regeneration in the Central Nervous System[J]. Motor Control, 2009, 13(4): 412–441

    Article  Google Scholar 

  38. Zanakis M F. Differential Effects of Various Electrical Parameters on Peripheral and Central Nerve Regeneration[J]. Acupunct. Electrother. Res., 1990, 15(3-4): 185–191

    Article  Google Scholar 

  39. Patel N, Poo M M. Orientation of Neurite Growth by Extracellular Electric Fields[J]. J. Neurosci., 1982, 2(4): 483–496

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Sui  (随力).

Additional information

Funded by National Natural Science Foundation of China (Nos.11179015, 51173108) and Innovation Program of Shanghai Municipal Education Commission (No.12ZZ143)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sui, L., Peng, B., Huang, S. et al. Synthesis and bio-activities of poly (3,4-ethylenedioxythiophene) (PEDOT)/poly (styrene sulfonate) (PSS)/gelatin layer on indium tin oxide (ITO)-coated glass. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 31, 662–670 (2016). https://doi.org/10.1007/s11595-016-1426-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-016-1426-4

Key words

Navigation