Skip to main content

Mechanistic investigation into the role of aluminum diffusion in the oxidation behavior of cryomilled NiCrAlY bond coat

Abstract

High temperature oxidation behavior of the bond coat layer is a critical factor that controls the failure mechanism of thermal barrier coatings (TBCs). Previous work reveald that TBCs with cryomilled NiCrAlY bond coats exhibited an improved oxidation behavior compared to equivalent TBCs with conventional bond coats. The cryomilled NiCrAlY bond coats contributed to a slower growth rate of thermally grown oxides (TGO) with a final thinner thickness and enhanced homogeneity in TGO composition. To better understand the improved oxidation behavior, a mechanistic investigation based on diffusion theory and quantum mechanics is performed to elucidate the role of aluminum diffusion in the oxidation behavior and how the microstructural features of the cryomilled NiCrAlY bond coats, i e, the creation of a thermally stable, uniform distribution of ultrafine Al-rich oxide dispersoids, affect the diffusion kinetics of Al and the migration of free electrons. It is revealed that these Al-rich oxide dispersoids result in a uniform diffusion of Al and slow migration of free electrons within the NiCrAlY bond coat, consequently leading to the improved oxidation behavior.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    Padture NP, Gell M, Jordan EH. Thermal Barrier Coatings for Gas-Turbine Engine Applications[J]. Science, 2002 (296): 280–289

    Article  Google Scholar 

  2. [2]

    Clarke DR, Levi CG. Materials Design for the Next Generation Thermal Barrier Coatings[J]. Annual Review of Materials Research, 2003(33): 383–389

    Article  Google Scholar 

  3. [3]

    Nicholls JR, Simms NJ, Chan WY, et al. Smart Overlay Coatings -Concept and Practice[J]. Surface and Coatings Technology, 2002 (149): 236–240

    Article  Google Scholar 

  4. [4]

    Miller RA. Current Status of Thermal Barrier Coatings -an Overview[J]. Surface and Coatings Technology, 1987 (30): 1–8

    Article  Google Scholar 

  5. [5]

    Evans AG, Mumm DR, Hutchinson JW, et al. Mechanisms Controlling the Durability of Thermal Barrier Coatings[J]. Progress in Materials Science, 2001, 46: 505–510

    Article  Google Scholar 

  6. [6]

    Sivakumar R, Mordike BL. High Temperature Coatings for Gas Turbine Blades: A Review[J]. Surface and Coatings Technology, 1989(37): 139–143

    Article  Google Scholar 

  7. [7]

    Taylor TA. Low Thermal Expansion Bondcoats for Thermal Barrier Coatings[P]. United States, US 7910225, 2011

    Google Scholar 

  8. [8]

    Ma K, Schoenung JM. Influence of Cryomilling on the Microstructural Features in HVOF-sprayed NiCrAlY Bond Coats for Thermal Barrier Coatings: Creation of a Homogeneous Distribution of Nano-scale Dispersoids[J]. Philosophical Magazine Letters, 2010(90): 739–745

    Article  Google Scholar 

  9. [9]

    Achar DRG, Munoz-Arroyo R, Singheiser L, et al. Modelling of Phase Equilibria in MCrAlY Coating Systems[J]. Surface and Coatings Technology, 2004(187): 272–276

    Article  Google Scholar 

  10. [10]

    Nijdam TJ, Sloof WG. Microstructural Evolution of a Mcraly Coating Upon Isothermal Annealing[J]. Materials Characterization, 2008(59): 1 697–1 702

    Article  Google Scholar 

  11. [11]

    Ma K, Tang F, Schoenung JM. Investigation Into the Effects of Fe Additions on the Equilibrium Phase Compositions, Phase Fractions and Phase Stabilities in The Ni-Cr-Al System[J]. Acta Materialia, 2010(58): 1 518–1 523

  12. [12]

    Brandl W, Grabke HJ, Toma D, et al. The Oxidation Behaviour of Sprayed Mcraly Coatings[J]. Surface and Coatings Technology, 1996, 41: 86–87

    Google Scholar 

  13. [13]

    Ajdelsztajn L, Picas JA, Kim GE, et al. Oxidation Behavior of HVOF Sprayed Nanocrystalline NiCrAlY Powder[J]. Materials Science and Engineering A, 2002(338): 33–37

    Article  Google Scholar 

  14. [14]

    Clarke DR, Phillpot SR. Thermal Barrier Coating Materials[J]. Materials Today, 2005(8): 22–28

    Article  Google Scholar 

  15. [15]

    Hou PY. Impurity Effects on Alumina Scale Growth[J]. Journal of the American Ceramic Society, 2003(86): 660–667

  16. [16]

    Evans HE, Taylor MP. Diffusion Cells and Chemical Failure of MCrAlY Bond Coats in Thermal-Barrier Coating Systems[J]. Oxidation of Metals, 2001(55): 17–23

    Article  Google Scholar 

  17. [17]

    Niranatlumpong P, Ponton CB, Evans HE. The Failure of Protective Oxides on Plasma-Sprayed NiCrAlY Overlay Coatings[J]. Oxidation of Metals, 2000(53): 241–243

    Article  Google Scholar 

  18. [18]

    Evans AG, Clarke DR, Levi CG. The Influence of Oxides on the Performance of Advanced Gas Turbines[J]. Journal of the European Ceramic Society, 2008(28): 1 405–1 409

    Article  Google Scholar 

  19. [19]

    Rabiei A, Evans AG. Failure Mechanisms Associated with the Thermally Grown Oxide in Plasma-Sprayed Thermal Barrier Coatings[J]. Acta Materialia, 2000(48): 3 963–3 968

    Article  Google Scholar 

  20. [20]

    Xu T, Faulhaber S, Mercer C, et al. Observations and Analyses of Failure Mechanisms in Thermal Barrier Systems with Two Phase Bond Coats Based on Nicocraly[J]. Acta Materialia, 2004(52): 1 439–1 445

    Article  Google Scholar 

  21. [21]

    Ajdelsztajn L, Tang F, Kim GE, et al. Synthesis and Oxidation Behavior of Nanocrystalline Mcraly Bond Coatings[J]. Journal of Thermal Spray Technology, 2005(14): 23–32

    Article  Google Scholar 

  22. [22]

    Echsler H, Shemet V, Schütze M, et al. Cracking In and Around The Thermally Grown Oxide in Thermal Barrier Coatings: A Comparison of Isothermal and Cyclic Oxidation[J]. Journal of Materials Science, 2006(41): 1 047–1 452

    Article  Google Scholar 

  23. [23]

    Pomeroy MJ. Coatings for Gas Turbine Materials and Long Term Stability Issues[J]. Materials & Design, 2005(26): 223–226

    Article  Google Scholar 

  24. [24]

    Wu YN, Qin M, Feng ZC, et al. Improved Oxidation Resistance of Nicraly Coatings[J]. Materials Letters, 2003( 57): 2 404-2 408

    Google Scholar 

  25. [25]

    Okada M, Vassen R, Karger M, et al. Deposition and Oxidation of Oxide-Dispersed CoNiCrAlY Bondcoats[J]. Journal of Thermal Spray Technology, 2014( 23): 147–152

    Article  Google Scholar 

  26. [26]

    Czech N, Schmitz F, Stamm W. Improvement of Mcraly Coatings by Addition of Rhenium[J]. Surface and Coatings Technology, 1994, 68-69: 17–20

    Article  Google Scholar 

  27. [27]

    Huang L, Sun XF, Guan HR, et al. Improvement of The Oxidation Resistance of Nicraly Coatings by the Addition of Rhenium[J]. Surface and Coatings Technology, 2006( 201): 1 421–1 430

    Article  Google Scholar 

  28. [28]

    Beele W, Czech N, Quadakkers WJ, et al. Long-Term Oxidation Tests on a Re-Containing Mcraly Coating[J]. Surface and Coatings Technology, 1997, 94-95: 41–47

    Article  Google Scholar 

  29. [29]

    Chen SF, Liu SY, Wang Y, et al. Microstructure and Properties of HVOF-Sprayed NiCrAlY Coatings Modified by Rare Earth[J]. Journal of Thermal Spray Technology, 2014( 23): 809–813

    Article  Google Scholar 

  30. [30]

    Ma K, Schoenung JM. Isothermal Oxidation Behavior of Cryomilled Nicraly Bond Coat: Homogeneity and Growth Rate of TGO[J]. Surface and Coatings Technology, 2011( 205): 5 178–5 183

    Article  Google Scholar 

  31. [31]

    Tang F, Ajdelsztajn L, Kim GE, et al. Effects Of Variations In Coating Materials And Process Conditions on the Thermal Cycle Properties Of Nicraly/Ysz Thermal Barrier Coatings[J]. Materials Science and Engineering: A, 2006(425): 94–98

    Article  Google Scholar 

  32. [32]

    Denis A, Garcia EA. Model to Simulate Parabolic Followed by Linear Oxidation Kinetics[J]. Oxidation of Metals, 1988(29): 153–158

    Article  Google Scholar 

  33. [33]

    Birks N, Meier G. Introduction to High Temperature Oxidation of Metals[M]. London: Arnold, 1993

    Google Scholar 

  34. [34]

    Hindam HM, Smeltzer WW. Application of Auger Electron Spectroscopy and Inert Metal Marker Techniques to Determine Metal and Oxygen Transport in Oxide Films on Metals[J]. Oxidation of Metals, 1980( 14): 337

    Article  Google Scholar 

  35. [35]

    Toma D, Brandl W, Köster U. The Characteristics of Alumina Scales Formed on HVOF-Sprayed MCrAlY Coatings[J]. Oxidation of Metals, 2000( 53): 125–132

    Article  Google Scholar 

  36. [36]

    Brandl W, Toma D, Krüger J, et al. The Oxidation Behaviour of HVOF Thermal-Sprayed Mcraly Coatings[J]. Surface and Coatings Technology, 1997, 94-95: 21–27

    Article  Google Scholar 

  37. [37]

    Toscano J, Vaen R, Gil A, et al. Parameters Affecting TGO Growth and Adherence on Mcraly-Bond Coats for TBC's[J]. Surface and Coatings Technology, 2006(201): 3 906-3 910

    Article  Google Scholar 

  38. [38]

    Tang F, Ajdelsztajn L, Schoenung JM. Influence of Cryomilling on the Morphology and Composition of the Oxide Scales Formed on HVOF Conicraly Coatings[J]. Oxidation of Metals, 2004( 61): 219–223

    Article  Google Scholar 

  39. [39]

    Pauling L. The Nature of The Chemical Bond. IV. The Energy of Single Bonds and The Realtive Electronegativity of Atoms[J]. Journal of the American Chemical Society, 1932( 54): 3 570–3 673

    Article  Google Scholar 

  40. [40]

    Hastelloy X Alloy Report[OL]. Http://www.haynesintl.com/pdf/h3009. pdf, 1997

  41. [41]

    Schiff LI. Quantum Mechanics[M]. New York: McGraw-Hill, 1968:46

    Google Scholar 

  42. [42]

    Griffiths DJ. Introduction to Quantum Mechanics[M]. 2nd ed. NJ: Prentice Hall, 2004

    Google Scholar 

  43. [43]

    Giuseppe Grosso, Parravicini GP. Solid State Physics[M]. New York: Academic Press, 2000

    Google Scholar 

  44. [44]

    Carl M Bender, SA Orszag. Advanced Mathematical Methods for Scientists and Engineers[M]. Berlin: Springer, 1999

    Book  Google Scholar 

  45. [45]

    WKB approximation. http://en.wikipedia.org/wiki/WKB_approximation[OL].

  46. [46]

    Tang F, Ajdelsztajn L, Schoenung JM. Characterization of Oxide Scales Formed on HVOF Nicraly Coatings with Various Oxygen Contents Introduced During Thermal Spraying[J]. Scripta Materialia, 2004(51): 25–29

    Article  Google Scholar 

  47. [47]

    Jackson JD. Classical Electrodynamics[M]. 3rd ed, New York: Wiley 1998

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Julie M. Schoenung.

Additional information

Funded by the U.S. Office of Naval Research (ONR) (No. N00014-06-1-0506)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ma, K., Tang, X. & Schoenung, J.M. Mechanistic investigation into the role of aluminum diffusion in the oxidation behavior of cryomilled NiCrAlY bond coat. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 31, 35–43 (2016). https://doi.org/10.1007/s11595-016-1326-7

Download citation

Key words

  • nickel alloys
  • coatings
  • oxidation
  • diffusion