Skip to main content
Log in

Nanocomposite membranes based on perfluorosulfonic acid/ceramic for proton exchange membrane fuel cells

  • Advanced materials
  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

Perfluorosulfonic acid/ceramic nanocomposite membranes were investigated as electrolytes for polymer electrolyte membrane fuel cell applications under low relative humidity. Different nanosized ceramics (SiO2, ZrO2, TiO2) with diameters in the range of 2-6 nm were synthesized in situ in Nafion solution through a sol-gel process and the formed nanosized ceramics were well-dispersed in the solution. The nanocomposite membranes were formed through a casting process. The nanocomposite membrane showes enhanced water retention ability and improved proton conductivity compared to those of pure Nafion membrane. The mechanical strength of the formed nanocomposite membranes is slightly less than that of pure Nafion membrane. The experimental results demonstrate that the polymer ceramic nanocompsite membranes are potential electrolyte for fuel cells operating at elevated temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alberti G, Casciola M, Composite Membranes for Medium-Temperature PEM Fuel Cells [J]. Annu. Rev. Mater. Res., 2003, 33:129–154

    Article  Google Scholar 

  2. Zhang JL, Xie Z, Zhang JJ, et al. High Temperature PEM Fuel Cells [J]. J. Power Sources, 2006, 160: 872–891

    Article  Google Scholar 

  3. Li QF, He RH, Gao J, et al. The CO Poisoning Effect in Polymer Electrolyte Membrane Fuel Cells Operational at Temperatures up to 200°C [J]. J. Electrochem. Soc., 2003, 150: A1599–1605

    Article  Google Scholar 

  4. Vishnyakov V M, Proton Exchange Membrane Fuel Cells[J]. Vacuum, 2006, 80:1053–1065

    Article  Google Scholar 

  5. Devanathan R, Recent Developments in Proton Exchange Membranes for Fuel Cells[J]. Energy Environ. Sci., 2008, 1: 101–109

    Article  Google Scholar 

  6. Sacca A, Gatto I, Carbone A, et al. ZrO2-Nafion Composite Membranes for Polymer Electrolyte Fuel Cells (PEFCs) at Intermediate Temperature [J]. J. Power Sources, 2006, 163: 47–51

    Article  Google Scholar 

  7. Chen SY, Han CC, Tsai CH, et al. Effect of Morpholo- gical Properties of Ionic Liquid-Templated Mesoporous Anatase TiO2 on Performance of PEMFC With Nafion/TiO2 Composite Membrane at Elevated Temperature and Low Relative Humidity [J]. J. Power Sources, 2007, 171: 363–372

    Article  Google Scholar 

  8. Mauritz KA, Payne JT, Perfluorosulfonate Ionomer/Silicate Hybrid Membranes via Base-Catalyzed in situ Sol-Gel Processes for Tetraethylorthosilicate[J]. J. Membr. Sci., 2000, 168: 39–51

    Article  Google Scholar 

  9. Alberti G, Casciola M, Solid State Protonic Conductors Present Main Applications and Future Prospects [J]. Solid State Ionics, 2001, 145: 3–16

    Article  Google Scholar 

  10. Adjemian KT, Dominey R, Krishnan L, et al. Function and Characterization of Metal Oxide Nafion Composite Membranes for Elevated Temperature H2/O2 PEM Fuel Cells [J]. Chem. Mater., 2006, 18: 2238–2248

    Article  Google Scholar 

  11. Jalani NH, Dunn K, Datta R, Synthesis and Characterization of Nafion-MO2 (M=Zr, Si, Ti) Nanocom-Posite Membranes for Higher Temperature PEM Fuel Cells [J]. Electrochim Acta, 2005, 51:553–560

    Article  Google Scholar 

  12. Apchatachutapan W, Moore RB, Mauritz KA, Asymmetric Nafion/Zirconium Oxide Hybrid Mem- branes via in situ Sol-Gel Chemistry [J]. J. Appl. Polym. Sci., 1996, 62:417–426

    Article  Google Scholar 

  13. Tang HL, Wan ZH, Pan M, et al. Self-assembled Nafion-Silica Nanoparticles for Elevated-High Temper- ature Polymer Electrolyte Membrane Fuel Cells [J]. Electrochem. Commun, 2007, 9: 2003–2008

    Article  Google Scholar 

  14. Pereira F, Valle K, Belleville P, et al. Advanced Mesostructured Hybrid Silica-Nafion Membranes for High-Performance PEM Fuel Cell [J]. Chem. Mater., 2008, 20: 1710–1718

    Article  Google Scholar 

  15. Zhang HL, Pan JJ, He XC, et al. Zeta Potential of Nafion Molecules in Isopropanol-Water Mixture Solvent [J]. J. Appl. Polym. Sci., 2008, 107: 3306–3309

    Article  Google Scholar 

  16. Pan JJ, Zhang HL, Pan M, Self-assembly of Nafion Molecules onto Silica Nanoparticles Formed in situ through Sol-Gel Process [J]. J. Coll. Interf. Sci., 2008, 326(1): 55–60

    Article  Google Scholar 

  17. Li K, Ye GB, Pan JJ, et al. Self-Assembled Nafion/Metal Oxide Nanoparticles Hybrid Proton Exchange Membranes[J]. J. Membr. Sci., 2010, 347: 26–31

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiong Li  (李琼).

Additional information

Funded by the Postdoctoral Science Foundation of China (2013M540610) and the Hubei Province Scientific Research Projects (D20131601)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Q., Wang, G., Ye, H. et al. Nanocomposite membranes based on perfluorosulfonic acid/ceramic for proton exchange membrane fuel cells. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 30, 1125–1129 (2015). https://doi.org/10.1007/s11595-015-1282-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-015-1282-7

Key words

Navigation