Skip to main content

Advertisement

Log in

Preparation of ceramic foams suitable for aircraft arresting by the airport runway based on a protein foaming agent

  • Cementitious Materials
  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

Crushable ceramic foams are more suitable to be used as an arrestor material applied in engineered materials arresting system (EMAS) for airport runway for their properties of widely controllable strength, negligible crushing-rebounding behavior, durability, and chemically-inert composition, comparing with traditional concrete foams. The synthesis of ceramic foams adopted direct-foaming method and used an animal protein as foaming agent. Kaolin, talc powder and alumina were the main raw materials. Effects of the ratios of raw materials, calcination temperatures, heating rates, holding time, viscosities of polyvinyl alcohol (PVA) solution as well as the amounts of protein foaming agent and water on microscopic structure, densities, compressive strength and open porosities of ceramic foams were investigated systematically. The results indicate that ceramic foams with typical pore sizes 100–300 μm, open porosities from 73.1% to 91.5%, densities from 0.25 to 0.62 g·cm−3, compressive strength from 0.19 to 4.89 MPa, are obtained by properly adjusting the parameters mentioned above. And the mechanical strength meets the requirement for the EMAS for airport runway. In addition, good correlations are observed among compressive strength, open porosity, microscopic structure, and crystal phase. Furthermore, the possibility of producing the general dimensions of such aircraft arresting components with the proposed method was also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E Heymsfield, T L Halsey. Sensitivity Analysis of Engineered Material Arrestor Systems to Aircraft and Arrestor Material Characteristics[J]. Transport. Res. Rec., 2008, 2052: 110–117

    Article  Google Scholar 

  2. Z Q Zhang, J L Yang, Q M Li. An Analytical Model of Foamed Concrete Aircraft Arresting System[J]. Int. J. Impact Eng., 2013, 61:1–12

    Article  Google Scholar 

  3. E Heymsfield, W M Hale, T L Halsey. Aircraft Response in an Airfield Arrestor System During an Overrun[J]. J. Transp. Eng., 2012, 138:284–292

    Article  Google Scholar 

  4. P Ciambelli, V Palma, E Palo. Comparison of Ceramic Honeycomb Monolith and Foam as Ni CatalystCarrier for Methane Autothermal Reforming[J]. Catal. Today, 2010, 155: 92–100

    Article  Google Scholar 

  5. S Zuercher, K Pabst, G Schaub. Ceramic Foams as Structured Catalyst Inserts in Gas-particle Filters for Gas Reactions-Effect of Backmixing[J]. Appl. Catal., A: General, 2009, 357: 85–92

    Article  Google Scholar 

  6. F Krauss Juillerat, R Engeli, I Jerjen, et al. Synthesis of Bone-like Structured Foams[J]. J. Eur. Ceram. Soc., 2013, 33: 1 497–1 505

    Article  Google Scholar 

  7. P Jana, V Ganesan. Processing of Low-density Alumina Foam[J]. J. Eur. Ceram. Soc., 2011, 31: 75–78

    Article  Google Scholar 

  8. W Min, H Y Du, A R Guo, et al. Microstructure Control in Ceramic Foams via Mixed Cationic/Anionic Surfactant[J]. Mater. Lett., 2012, 88: 97–100

    Article  Google Scholar 

  9. H Kima, S Leeb, Y Hanc, et al. Control of Pore Size in Ceramic Foams: Influence of Surfactant Concentration[J]. Mater. Chem. Phys., 2009, 113: 441–444

    Article  Google Scholar 

  10. V Medri, A Ruffini. The Influence of Process Parameters on In Situ Inorganic Foaming of Alkali-bonded SiC Based Foams[J]. Ceram. Int., 2012, 38:3 351–3 359

    Article  Google Scholar 

  11. J L Yu, J L Yang, H X Li, et al. Study on Particle-stabilized Si3N4 Ceramic Foams[J]. Mater. Lett., 2011, 65:1 801–1 804

    Article  Google Scholar 

  12. S Akpinar, I M Kusoglu, O Ertugrul, et al. Silicon Carbide Particle Reinforced Mullite Composite Foams[J]. Ceram. Int., 2012, 38:6 163–6 169

    Article  Google Scholar 

  13. L Y Yin, X G Zhou, J S Yu, et al. Preparation of Si3N4 Ceramic Foams by Simultaneously Using Egg White Protein and Fish Collagen[J]. Ceram. Int., 2013, 39: 445–448

    Article  Google Scholar 

  14. T Juettner, H Moertel, V Svinka, et al. Structure of Kaoline-alumina Based Foam Ceramics for High Temperature Applications[J]. J. Eur. Ceram. Soc., 2007, 27:1 435–1 441

    Article  Google Scholar 

  15. Y F Shao, D C Jia, B Y Liu. Characterization of Porous Silicon Nitride Ceramics by Pressureless Sintering Using Fly Ash Cenosphere as a Pore-forming Agent[J]. J. Eur. Ceram. Soc., 2009, 29:1 529–1 534

    Article  Google Scholar 

  16. C H Wang. Investigation on Some Techniques Related to Preparation of Foamed Concrete[D]. Nanjing: Nanjing University of Technology, 2006

    Google Scholar 

  17. B Fabbri, S Gualtieri, C Leonardi. Modifications Induced by the Thermal Treatment of Kaolin and Determination of Reactivity of Metakaolin[J]. Appl. Clay Sci., 2013, 73:2–10

    Article  Google Scholar 

  18. J B Rodrigues Neto, R Moreno. Rheological Behaviour of Kaolin/Talc/Alumina Suspensions for Manufacturing Cordierite Foams[J]. Appl. Clay Sci., 2007, 37:157–166

    Article  Google Scholar 

  19. S de Aza, J Espinosa de los Monteros. Mecanismo de la Formación de Cordierita en Cuerpos Cerámicos[J]. Bol. Soc. Esp. Ceram. Vidr., 1972, 11: 315–321

    Google Scholar 

  20. S Tamborenea, A D D Mazzoni, E F Aglietti. Mechanochemical Activation of Minerals on the Cordierite Synthesis[J]. Thermochim. Acta, 2004, 411:219–224

    Article  Google Scholar 

  21. J B Rodrigues Neto, R Moreno. Effect of Mechanical Activation on the Rheology and Casting Performance of Kaolin/Talc/Alumina Suspensions for Manufacturing Dense Cordierite Bodies[J]. Appl. Clay Sci., 2008, 38: 209–218

    Article  Google Scholar 

  22. X He, X G Zhou, B Su. 3D Interconnective Porous Alumina Ceramics via Direct Protein Foaming[J]. Mater. Lett., 2009, 63: 830–832

    Article  Google Scholar 

  23. D L Sahagian, A A Proussevitch. 3D Particle Size Distributions from 2D Observations: Stereology for Natural Applications[J]. J. Volcanol. Geotherm. Res., 1998, 84:173–196

    Article  Google Scholar 

  24. T Fukasawa, Z Y Deng, M Ando, et al. Pore Structure of Porous Ceramics Synthesized from Water-based Slurry by Freeze-dry Process[J]. J. Mater. Sci., 2001, 36:2 523–2 527

    Article  Google Scholar 

  25. E Prud’homme, P Michaud, E Joussein, et al. In Situ Inorganic Foams Prepared from Various Clays at Low Temperature[J]. Appl. Clay Sci., 2011, 51: 15–22

    Article  Google Scholar 

  26. H Tian, Q S Ma. Effects of Heating Rate on the Structure and Properties of SiOC Ceramic Foams Derived from Silicone Resin[J]. Ceram. Int., 2012, 38:2 101–2 104

    Article  Google Scholar 

  27. E D Manev, A V Nguyen. Effects of Surfactant Adsorption and Surface Forces on Thinning and Rupture of Foam Liquid Films[J]. Int. J. Miner. Process., 2005, 77:1–45

    Article  Google Scholar 

  28. S A Koehler, H A Stone, M P Brenner, et al. Dynamics of Foam Drainage[J]. Am. Physical Soc., 1998, 58:2 097–2 106

    Google Scholar 

  29. C Vakifahmetoglu, I Menapace, A Hirsch, et al. Highly Porous Macro- and Micro-cellular Ceramics from a Polysilazane Precursor[J]. Ceram. Int., 2009, 35:3 281–3 290

    Article  Google Scholar 

  30. X J Chen, A X Lu, G Qu. Preparation and Characterization of Foam Ceramics from Red Mud and Fly Ash Using Sodium Silicate as Foaming Agent[J]. Ceram. Int., 2013, 39:1 923–1 929

    Article  Google Scholar 

  31. G X Zhao, B Y Zhu. Action Principle of Surfactant[M]. Beijing: China Light Industry Press, 2003

    Google Scholar 

  32. X He, B Su, Z H Tang, et al. The Comparison of Macroporous Ceramics Fabricated through the Protein Direct Foaming and Sponge Replica Methods[J]. J. Porous Mater., 2012, 19:761–766

    Article  Google Scholar 

  33. Y M Lin, C W Li, C A Wang. Effects of Mullite Content on the Properties and Microstructure of Porous Anorthite/Mullite Composite Ceramics[J]. J. Inorg. Mater., 2011, 26:1 095–1 100

    Article  Google Scholar 

  34. B Jiang, Z J Wang, N Q Zhao. Effect of Pore Size and Relative Density on the Mechanical Properties of Open Cell Aluminum Foams[J]. Scr. Mater., 2007, 56:169–172

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dali Zhou  (周大利).

Additional information

Funded partly by the National Natural Science Foundation of China (No. 51202151)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Zhou, D., Yang, W. et al. Preparation of ceramic foams suitable for aircraft arresting by the airport runway based on a protein foaming agent. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 29, 980–989 (2014). https://doi.org/10.1007/s11595-014-1031-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-014-1031-3

Key words

Navigation