Advertisement

RGD gifted PDLLA-PRGD conduits promotes the sciatic nerve regeneration

  • Xiaoqing Fang (方晓青)
  • Tong Qiu (邱彤)Email author
  • Lijuan Xie
  • Yixia Yin
  • Binbin Li
  • Qiongjiao Yan
  • Honglian Dai
  • Xinyu Wang
  • Shipu Li
Article
  • 84 Downloads

Abstract

Schwann cells play a key role in peripheral nerve growth and regeneration. The aim of this study was to evaluate the effects of RGD peptides on Schwann cell behavior, and to identify the effects of the modified PDLLA films with RGD in vivo. The results revealed that RGD coating with the concentration of 100–500 ug/mL promoted the cell proliferation and boosted the cell migration. Molecularly, RGD coating also enhanced the expression of the proliferation related genes (c-fos and c-jun) and the cell behavior related genes (actin, tublin, tau and MAP1) at first stages of the seeding, which is similar to the effects from laminin coating. In vivo, RGD addition improved the recovery efficiency of the transected nerve in regard of the more survived Schwann cells in vivo and the formation of more mature myelin sheath. Taken together, RGD peptides are good candidates to enhance the biocompatibility of the biomaterials and facilitate the peripheral nerve regeneration by prompting responses in Schwann cells.

Key words

RGD Schwann cells cell behavior PDLLA-PRGD conduit sciatic nerve regeneration 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Epple M, Rueger J M Festk. Orperchemie Und Chirurgie [J]. Nachr. Chem. Tech. Lab., 1999, 47: 1 405–1 410CrossRefGoogle Scholar
  2. [2]
    Rasmussen J R, Stedronsky E R, Whitesides G M. Introduction, Modification, and Characterization of Functional Groups on the Surface of Low-density Polyethylene Film [J]. J. Am. Chem. Soc., 1977, 99: 4 736–4 745CrossRefGoogle Scholar
  3. [3]
    Lee J H, Jung J W, Kang I K, et al. Cell Behaviour on Polymer Surfaces with Different Functional Groups [J]. Biomaterials, 1994, 15: 705–711CrossRefGoogle Scholar
  4. [4]
    Brandley B K, Schnaar R L. Covalent Attachment of an ARG-GLY-ASP Sequence Peptide to Derivatizable Polyacrylamide Surfaces: Support of Fibroblast Adhesion and Long-term Growth [J]. Anal. Biochem., 1998, 172: 270–278CrossRefGoogle Scholar
  5. [5]
    Lin H B, Zhao Z C, Garcia-Echeverria C, et al. Synthesis of a Novel Polyurethane Copolymer Containing Covalently AttachedRGD Peptide [J]. J Biomater. Sci., 1991, 3: 217–227CrossRefGoogle Scholar
  6. [6]
    Falb R D, Grode G A. Covalent Bonding of Proteins to Solid Surfaces [J]. Fed. Proc., 1971, 30: 1 688–1 691Google Scholar
  7. [7]
    Kobayashi K, Sumitomo H. Oligosaccharide-carrying Styrenetype Macromers. Polymerization Andspecific Interactions between the Polymers and Liver Cells [J]. J. Macromol. Sci. Chem., 1988, 25: 655–667CrossRefGoogle Scholar
  8. [8]
    Weigel P H, Schnaar R L, Kuhlenschmidt M S, et al. Adhesion of Hepatocytes to Immobilized Sugars: A Threshold Phenomenon [J]. J. Biol. Chem., 1979, 354: 10 830–10 838Google Scholar
  9. [9]
    Ruoslahti E, Pierschbacher M D. New Perspectives in Cell Adhesion: RGD and Integrins [J]. Science, 1987, 238: 491–497CrossRefGoogle Scholar
  10. [10]
    Albelda S M, Buck C A. Integrins and Other Cell Adhesion Molecules [J]. FASEB. J., 1990, 4: 2 868–2 880Google Scholar
  11. [11]
    Travis J. Biotech Gets a Grip on Cell Adhesion [J]. Science, 1993, 260: 906–908CrossRefGoogle Scholar
  12. [12]
    Kammerer P W, Heller M, Brieger J, et al. Immobilisation of Linear and Cyclic RGD-peptides on Titanium Surfaces and Their Impact on Endothelial Cell Adhesion and Proliferation [J]. Eur. Cells. Mater., 2011, 21: 364–372Google Scholar
  13. [13]
    Shu X Z, Ghosh K, Liu Y, et al. Attachment and Spreading of Fibroblasts on an RGD Peptide-modified Injectable Hyaluronan Hydrogel [J]. J. Biomed. Mater. Res. A, 2004, 68: 365–375CrossRefGoogle Scholar
  14. [14]
    Li B, Chen J X, Wang J H C. RGD Peptide-conjugated poly (dimethylsiloxane) Promotes Adhesion, Proliferation, and Collagen Secretion of Human Fibroblasts [J]. J. Biomed. Mater. Res. A, 2006, 79: 989–998CrossRefGoogle Scholar
  15. [15]
    Hersel U, Dahmen C, Kessler H. RGD Modified Polymers: Biomaterials for Stimulated Cell Adhesion and Beyond [J]. Biomaterials, 2003, 24: 4 385–4 415CrossRefGoogle Scholar
  16. [16]
    Davis D H, Giannoulis C S, Johnsonb R W, et al. Immobilization of RGD to Silicon Surfaces for Enhanced Cell Adhesion and Proliferation[J]. Biomaterials, 2002, 23: 4 019–4 027CrossRefGoogle Scholar
  17. [17]
    Kafi M A, El-Said W A, Kim T H, et al. Cell Adhesion, Spreading, and Proliferation on Surface Functionalized with RGD Nanopillar Arrays [J]. Biomaterials, 2012, 33: 731–739CrossRefGoogle Scholar
  18. [18]
    Puleo D A, Bizios R. RGDS Tetrapeptide Binds to Osteoblasts and Inhibits Fibronectin-mediated Adhesion [J]. Bone, 1991, 12:271–276CrossRefGoogle Scholar
  19. [19]
    Rezania A, Thomas C H, Branger A B, et al. The Detachment Strength and Morphology of Bone Cells Contacting Materials Modified with a Peptide Sequence Found within Bone Sialoprotein [J]. J. Biomed. Mater. Res., 1997, 37:9–19CrossRefGoogle Scholar
  20. [20]
    Massia S, Hubbell J. Covalent Surface Immobilization of Arg-Gly-Asp- and Tyr-Ile-Gly-Ser-Arg-containing Peptides to Obtain Well-defined Cell-adhesive Substrates [J]. Anal. Biochem., 1990, 187: 292–301CrossRefGoogle Scholar
  21. [21]
    Qiongjiao Y, Yixia Y, Binbin L. Use New PLGL-RGD-NGF Nerve Conduits for Promoting Peripheral Nerve Regeneration [J]. Biomedical Engineering Online, 2012, 11: 36–40CrossRefGoogle Scholar
  22. [22]
    Wohlrab S, Müller S, Schmidt A, et al. Cell Adhesion and Proliferation on RGD-modified Recombinant Spider Silk Proteins [J]. Biomaterials, 2012, 33: 6 650–6 659CrossRefGoogle Scholar
  23. [23]
    Wacker B K, Alford S K, Scott E A, et al. Endothelial Cell Migration on RGD-peptide-containing PEG Hydrogels in the Presence of Sphingosine 1-Phosphate [J]. Biophysical J., 2008, 94: 273–285CrossRefGoogle Scholar
  24. [24]
    Zayzafoon M, Stell C, Irwin R, et al. Extracellular Glucose Influences Osteoblast Differentiation and c-jun Expression [J]. J. Cell Bioche., 2000, 79:301–310CrossRefGoogle Scholar
  25. [25]
    Li H H, He B, Peng H, et al. Effects of Pyrroloquinoline Quinone on Proliferation and Expression of c-fos, c-jun, CREB and PCNA in Cultured Schwann Cells [J]. Zhonghua Zheng Xing Wai Ke Za Zhi, 2011, 27: 298–303Google Scholar
  26. [26]
    Peris L, Thery M, Faure J, et al. Tubulin Tyrosination is a Major Factor Affecting the Recruitment of CAP-Gly Proteins at Microtubule Plus Ends[J]. J. Cell Biol., 2006, 174: 839–849CrossRefGoogle Scholar
  27. [27]
    Ramey V H, Wang H W, Nakajima Y, et al. The Dam1 Ring Binds to the E-hook of Tubulin and Diffuses Along the Microtubule[J]. Mol. Biol. Cell, 2011, 22: 457–466CrossRefGoogle Scholar
  28. [28]
    Trinczek B, Ebneth A, Mandelkow E M, et al. Tau Regulates the Attachment/Detachment but not the Speed of Motors in Microtubule-Dependent Transport of Single Vesicles and Organelles [J]. J. Cell. Sci., 1999, 112: 2 355–2 367Google Scholar
  29. [29]
    Fuhrmann-Stroissnigg H, Noiges R, Descovich L, et al. The Light Chains of Microtubule-associated Proteins MAP1A and MAP1B Interact with α1-syntrophin in the Central and Peripheral Nervous System [J]. PLos One, 2012, 7: 49 722–49 727CrossRefGoogle Scholar
  30. [30]
    Liu W Q, Martinez J A, Durand J, et al. RGD-mediated Adhesive Interactions are Important for Peripheral Axon Outgrowth in Vivo [J]. Neurobiol. Dis., 2009, 34:11–22CrossRefGoogle Scholar
  31. [31]
    Afshari F T, Kwok J C, White L. Schwann Cell Migration Is Integrin-Dependent and Inhibited by Astrocyte-produced Aggrecan [J]. Glia, 2010, 58: 857–869Google Scholar

Copyright information

© Wuhan University of Technology and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Xiaoqing Fang (方晓青)
    • 1
    • 2
  • Tong Qiu (邱彤)
    • 2
    Email author
  • Lijuan Xie
    • 2
  • Yixia Yin
    • 2
  • Binbin Li
    • 2
  • Qiongjiao Yan
    • 2
  • Honglian Dai
    • 2
    • 3
  • Xinyu Wang
    • 2
    • 3
  • Shipu Li
    • 2
    • 3
  1. 1.Department of PaediatricsWuhan General Hospital of Guangzhou MilitaryWuhanChina
  2. 2.Biomedical Materials and Engineering CenterWuhan University of TechnologyWuhanChina
  3. 3.State Key Laboratory of Advanced Technology for Materials Synthesis and ProcessingWuhan University of TechnologyWuhanChina

Personalised recommendations