Skip to main content
Log in

Electrochemical preparation and photoelectric properties of Cu2O-loaded TiO2 nanotube arrays

  • Advanced Materials
  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

TiO2 nanotube (TNT) arrays were fabricated by anodic oxidation of titanium foil in a fluoridebased solution, on which Cu2O particles were loaded via galvanostatic pulse electrodeposition in cupric acetate solutions in the absence of any other additives. The structure and optical properties of Cu2O-loaded TiO2 nanotube arrays (Cu2O-TNTs) were analyzed by scanning electron microscopy (SEM), X-ray diffraction (XRD) and UV-Vis absorption, and the photoelectrochemical performance was measured using an electrochemical work station with a three-electrode configuration. The results show that the Cu2O particles distribute uniformly on the highly ordered anatase TiO2 nanotube arrays. The morphologies of Cu2O crystals change from branched, truncated octahedrons to dispersive single octahedrons with increasing deposition current densities. The Cu2OTNTs exhibited remarkable visible light responses with obvious visible light absorption and greatly enhanced visible light photoelectrochemical performance. The I–V characteristics under visible light irradiation show a distinct plateau in the region between approximately −0.3 and 0 V, resulting in higher open-circuit voltages and larger short-circuit currents with increased Cu2O deposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S Iijima. Helical Microtubules of Graphitic Carbon[J]. Nature, 1991, 354(6348): 56–58

    Article  Google Scholar 

  2. S P Albu, A Ghicov, J M Macak, et al. Self-organized, Free-standing TiO2 Nanotube Membrane for Flow-through Photocatalytic Applications[J]. Nano Lett., 2007, 7(5): 1 286–1 289

    Article  Google Scholar 

  3. Z Y Liu, X T Zhang, S Nishimoto, et al. Efficient Photocatalytic Degradation of Gaseous Acetaldehyde by Highly Ordered TiO2 Nanotube Arrays[J]. Environ. Sci. Technol., 2008, 42(22): 8 547–8 551

    Article  Google Scholar 

  4. L K Tan, M K Kumar, H Gao, et al. Transparent, Well-aligned TiO2 Nanotube Arrays with Controllable Dimensions on Glass Substrates for Photocatalytic Applications[J]. ACS Appl. Mater. Interfaces, 2010, 2(2): 498–503

    Article  Google Scholar 

  5. Z H Xu, J G Yu, G Liu. Enhancement of Ethanol Electrooxidation on Plasmonic Au/TiO2 Nanotube Arrays[J]. Electrochem. Commun., 2011, 13(11): 1 260–1 263

    Article  Google Scholar 

  6. J H Park, S Kim, A J Bard. Novel Carbon-doped TiO2 Nanotube Arrays with High Aspect Ratios for Efficient Solar Water Splitting[J]. Nano Lett., 2006, 6(1): 24–28

    Article  Google Scholar 

  7. G K Mor, K Shankar, C A Grimes, et al. Use of Highly-ordered TiO2 Nanotube Arrays in Dye-sensitized Solar Cells[J]. Nano Lett., 2006, 6(2): 215–218

    Article  Google Scholar 

  8. C C Tsai, H Teng. Regulation of the Physical Characteristics of Titania Nanotube Aggregates Synthesized from Hydrothermal Treatment[J]. Chem. Mater., 2004, 16(22): 4 352–4 358

    Article  Google Scholar 

  9. D A Wang, F Zhou, Y Liu, et al. Synthesis and Characterization of Anatase TiO2 Nanotubes with Uniform Diameter from Titanium Powder[J]. Mater. Lett., 2008, 62(12-13): 1 819–1 822

    Article  Google Scholar 

  10. R A Caruso, J H Schattka, A Greiner. Titanium Dioxide Tubes from Sol-gel Coating of Electrospun Polymer Fibers[J]. Adv. Mater., 2001, 13(20): 1 577–1 579

    Article  Google Scholar 

  11. J H Jung, H Kobayashi, S Shinkai, et al. Creation of Novel Helical Ribbon and Double-layered Nanotube TiO2 Structures Using an Organogel Template[J]. Chem. Mater., 2002, 14(4): 1 445–1 447

    Article  Google Scholar 

  12. D W Gong, C A Grimes, O K Varghese, et al. Titanium Oxide Nanotube Arrays Prepared by Anodic Oxidation[J]. J. Mater. Res., 2001, 16(12): 3 331–3 334

    Article  Google Scholar 

  13. G K Mor, O K Varghese, M Paulose, et al. Fabrication of Tapered, Conical-shaped Titania Nanotubes[J]. J. Mater. Res., 2003, 18(11): 2 588–2 593

    Article  Google Scholar 

  14. X Quan, S G Yang, X L Ruan, et al. Preparation of Titania Nanotubes and Their Environmental Applications as Electrode[J]. Environ. Sci. Technol., 2005, 39(10): 3 770–3 775

    Article  Google Scholar 

  15. A E Rakhshani. Preparation, Characteristics and Photovoltaic Properties of Cuprous Oxide—a Review[J]. Solid State Electron., 1986, 29(1): 7–17

    Article  Google Scholar 

  16. P E de Jongh, D Vanmaekelbergh, J J Kelly. Photoelectrochemistry of Electrodeposited Cu2O[J]. Electrochemi. Soc., 2000, 147(2): 486–489

    Article  Google Scholar 

  17. T Mahalingam, G Ravi, J P Chu, et al. Characterization of Pulse Plated Cu2O Thin Films[J]. Surf. Coat. Tech., 2003, 168(2–3): 111–114

    Article  Google Scholar 

  18. Y Hou, X Y Li, G H Chen, et al. Photoelectrocatalytic Activity of a Cu2O-loaded Self-organized Highly Oriented TiO2 Nanotube Array Electrode for 4-Chlorophenol Degradation[J]. Environ. Sci. Technol., 2009, 43(3): 858–863

    Article  Google Scholar 

  19. G K Mor, O K Varghese, C A Grimes, et al. Transparent Highly Ordered TiO2 Nanotube Arrays via Anodization of Titanium Thin Films[J]. Adv. Funct. Mater., 2005, 15(8): 1 291–1 296

    Article  Google Scholar 

  20. L Huang, S Zhang, F Peng, et al. Electrodeposition Preparation of Octahedral-Cu2O-loaded TiO2 Nanotube Arrays for Visible Lightdriven Photocatalysis[J]. Scripta Mater., 2010, 63(2): 159–161

    Article  Google Scholar 

  21. J G Yu, Y Hai, M Jaroniec. Photocatalytic Hydrogen Production over CuO-modified Titania[J]. J. Colloid Interface Sci., 2011, 357(1): 223–228

    Article  Google Scholar 

  22. J G Yu, J R Ran. Facile Preparation and Enhanced Photocatalytic H2-production Activity of Cu(OH)2 Cluster Modified TiO2[J]. Energy Environ. Sci., 2011, 4(4), 1 364–1 371

    Article  Google Scholar 

  23. Z H Xu, J G Yu. Visible-light-induced Photoelectrochemical Behaviors of Fe-modified TiO2 Nanotube Arrays[J]. Nanoscale, 2011, 3(8): 3 138–3 144

    Article  Google Scholar 

  24. S Y Kuang, S L Luo, Q Y Cai, et al. Fabrication, Characterization and Photoelectrochemical Properties of Fe2O3 Modified TiO2 Nanotube Arrays[J]. Appl. Surf. Sci., 2009, 255(16): 7 385–7 388

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Liang  (梁伟).

Additional information

Funded by the National Natural Science Foundation of China (No. 51175363), the Youth Staff Fund of Taiyuan University of Technology (Nos. K201016, K201013), the Specialized Fund for Innovative of College Students of Taiyuan City (No. 09122018), the Program for Changjiang Scholar and Innovative Research Team in University (No. IRT0972)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, G., Liang, W., Xue, J. et al. Electrochemical preparation and photoelectric properties of Cu2O-loaded TiO2 nanotube arrays. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 29, 23–28 (2014). https://doi.org/10.1007/s11595-014-0861-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-014-0861-3

Key words

Navigation