Skip to main content

Advertisement

Log in

Preparation and mechanical properties of β-SiC nanoparticle reinforced aluminum matrix composite by a multi-step powder metallurgy process

  • Advanced materials
  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

β-SiC nanoparticle reinforced Al matrix (nano-SiCp/Al) composite was prepared by a multistep powder metallurgy strategy including presureless sintering, hot compacting process and hot extrusion. The microstructures of the as-prepared composites were observed by scanning electronic microscopy (SEM), and the mechanical properties were characterized by tensile strength measurement and Brinell hardness test. The experimental results revealed that the tensile strength of the composite with the addition of 5wt% β-SiC nanoprticles could be increased to 215 MPa, increasing by 110% compared with pure Al matrix. Comparative experiments reflected that the β-SiC nanoprticles showed significant reinforcement effect than traditional α-SiC micro-sized particles. The preparation process and sintering procedure were investigated to develop a cost effective preparation strategy to fabricate nano-SiCp/Al composite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ibrahim IA, Mohamed FA, Lavernia EJ. Particulate Reinforced Metal Matrix Composites — A Review[J]. J. Mater. Sci., 1991, 26: 1 137–1 156

    Article  CAS  Google Scholar 

  2. Lloyd DJ. Aspects of Fracture in Particulate Reinforced Metal Matrix Composites[J]. Acta Metall. Mater., 1991, 39(1): 59–71

    Article  CAS  Google Scholar 

  3. Nan CW, Clarke DR. The Influence of Particle Size and Particle Fracture on the Elastic/Plastic Deformation of Metal Matrix Composites[J]. Acta Mater., 1996, 44(9): 3 801–3 811

    Article  CAS  Google Scholar 

  4. Harrigan WC. Commercial Processing of Metal Matrix Composites[J]. Mater. Sci. Eng.: A, 1998, 244(1): 75–79

    Article  Google Scholar 

  5. Rajan TPD, Pillai RM, Pai BC. Characterization of Centrifugal Cast Functionally Graded Aluminum-silicon Carbide Metal Matrix Composites[J]. Mater. Characterization, 2010, 61(10): 923–928

    Article  CAS  Google Scholar 

  6. Prabu SB, Karunamoorthy L, Kathiresan S, et al. Influence of Stirring Speed and Stirring Time on Distribution of Particles in Cast Metal Matrix Composite[J]. J. Mater. Process. Technol., 2006, 171(2): 268–273

    Article  CAS  Google Scholar 

  7. Euh K, Kang SB. Effect of Rolling on the Thermo-physical Properties of SiCp/Al Composites Fabricated by Plasma Spraying[J]. Mater. Sci. Eng: A, 2005, 395(1–2): 47–52

    Article  Google Scholar 

  8. Li W, Chen ZH, Chen D, et al. Thermal Fatigue Behavior of Al-Si/SiCp Composite Synthesized by Spray Deposition[J]. J. Alloys Compd., 2010, 504(1): S522–526

    Article  Google Scholar 

  9. Nicom N, Nomura HR. Melt Infiltration of SiCp Reinforced Al Matrix Composite by Newly Designed Pressure Infiltration Technique[J]. Mater. Sci. Eng: A, 2006, 441(1–2): 97–105

    Article  Google Scholar 

  10. Zahedi AM, Rezaie H, Javadpour J, et al. Processing and Impact Behavior of Al/SiCp Composites Fabricated by the Pressureless Melt Infiltration method[J]. Ceram. Int., 2009, 35(5): 1919–1926

    Article  CAS  Google Scholar 

  11. Ortega-Celaya F, Pech-Canul MI, López-Cuevas J, et al. Microstructure and Impact Behavior of Al/SiCp Composites Fabricated by Pressureless Infiltration with Different Types of SiCp[J]. J. Mater. Process. Technol., 2007, 183(2–3): 368–373

    Article  CAS  Google Scholar 

  12. Wang HL, Zhang R, Hu X, et al. Characterization of a Powder Metallurgy SiC/Cu-Al Composite[J]. J. Mater. Process. Technol., 2008, 197(1–3): 43–48

    CAS  Google Scholar 

  13. Woo KD, Zhang DL. Fabrication of Al-7wt%Si-0.4wt%Mg/SiC Nanocomposite Powders and Bulk Nanocomposites by High Energy Ball Milling and Powder Metallurgy[J]. Curr. Appl. Phys., 2004, 4(2–4): 175–178

    Article  ADS  Google Scholar 

  14. Duval-Riviere ML, Coster M, Chermant L, et al. Morphological Characterization of Hot-pressed α-SiC with Al-based Additives Deformed by Compression at High Temperature[J]. J. Eur. Ceram. Soc., 1995, 15(1): 71–80

    Article  CAS  Google Scholar 

  15. Lu YX, Lee CS, Li RKY, et al. The Effect of Cold Rolling on the Dynamic Mechanical Responses of SiCp/Al Composites[J]. J. Mater. Process. Technol., 1999, 91(1–3): 215–218

    Article  Google Scholar 

  16. Zhang WL, Gu MY, Wang DZ, et al. Rolling and Annealing Textures of a SiCw/Al Composite[J]. Mater. Lett., 2004, 58(27–28): 3 414–3 418

    Article  CAS  Google Scholar 

  17. Li WY, Liao HL, Li CJ, et al. Numerical Simulation of Deformation Behavior of Al Particles Impacting on Al Substrate and Effect of Surface Oxide Films on Interfacial Bonding in Cold Spraying[J]. Appl. Surf. Sci., 2007, 253(11): 5 084–5 091

    Article  CAS  Google Scholar 

  18. Xie GQ, Ohashi O, Song MH, et al. Reduction Mechanism of Surface Oxide Films and Characterization of Formations on Pulse Electriccurrent Sintered Al-Mg Alloy Powders[J]. Appl. Surf. Sci., 2005, 241(1–2): 102–106

    Article  CAS  ADS  Google Scholar 

  19. Yang Y, Lan J, Li XC. Study on Bulk Aluminum Matrix Nano-composite Fabricated by Ultrasonic Dispersion of Nano-sized SiC Particles in Molten Aluminum Alloy[J]. Mater. Sci. Eng.: A, 2004, 380(1–2): 378–383

    Article  Google Scholar 

  20. Moazami-Goudarzi M, Akhlaghi F. Novel Approach Based on in situ Powder Metallurgy (IPM) Method for Embedding of SiC Nanoparticles in Aluminium Powders[J]. Mater. Technol., 2012, 27(2): 158–164

    CAS  Google Scholar 

  21. Kollo L, Bradbury CR, Veinthal R, et al. Nano-silicon Carbide Reinforced Aluminium Produced by High-energy Milling and Hot Consolidation[J]. Mater. Sci. Eng.: A, 2011, 528(21): 6 606–6 615

    Article  CAS  Google Scholar 

  22. El-Daly AA, Abdelhameed M, Hashish M, et al. Synthesis of Al/SiC Nanocomposite and Evaluation of Its Mechanical Properties Using Pulse Echo Overlap Method[J]. J. Alloys Compd., 2012, 542: 51–58

    Article  CAS  Google Scholar 

  23. Saberi Y, Zebarjad SM, Akbari GH. On the Role of Nano-size SiC on Lattice Strain and Grain Size of Al/SiC Nanocomposite[J]. J. Alloys Compd., 2009, 484(1–2): 637–640

    Article  CAS  Google Scholar 

  24. Kueck AM, De Jonghe LC. Two-stage Sintering Inhibits Abnormal Grain Growth During β to α Transformation in SiC[J]. J. Eur. Ceram. Soc., 2008, 28(11): 2 259–2 264

    Article  CAS  Google Scholar 

  25. Han WZ, Vinogradov A, Hutchinson CR. On the Reversibility of Dislocation Slip During Cyclic Deformation of Al Alloys Containing Shear-resistant Particles[J]. Acta Mater., 2011, 59(9): 3 720–3 736

    Article  CAS  Google Scholar 

  26. Taupin V, Berbenni S, Fressengeas C, et al. On Particle Size Effects: An Internal Length Mean Field Approach Using Field Dislocation Mechanics[J]. Acta Mater., 2010, 58(16): 5 532–5 540

    Article  CAS  Google Scholar 

  27. Fang QH, Liu YW, Jin B, et al. Effect of Interface Stresses on the Image Force and Stability of an Edge Dislocation Inside a Nanoscale Cylindrical Inclusion[J]. Int. J. Solids. Struct., 2009, 46(6): 1 413–1 422

    Article  Google Scholar 

  28. Khraishi TA, Yan L, Shen YL. Dynamic Simulations of the Interaction between Dislocations and Dilute Particle Concentrations in Metalmatrix Composites (MMCs)[J]. Int. J. Plast., 2004, 20(6): 1 039–1 057

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minghai Chen  (陈名海).

Additional information

Funded by the Research Collaborative Innovation Project of Jiangsu Province, China (BY2009129) and the Science and Technology Project of Suzhou, China (SYG0905)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, L., Wu, H., Wu, X. et al. Preparation and mechanical properties of β-SiC nanoparticle reinforced aluminum matrix composite by a multi-step powder metallurgy process. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 28, 1059–1063 (2013). https://doi.org/10.1007/s11595-013-0819-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-013-0819-x

Key words

Navigation