Skip to main content
Log in

Synthesis and characterization of natural polymer/inorganic antibacterial nanocomposites

  • Biomaterial
  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

In order to increase antibacterial abilities and avoid the aggregation of nanoparticle, Ag-ZnO nanocomposites were studied in the network structure which contains bonds, and these bonds are formed by hydrolysis reaction between Ti(TBOU)4(TBOT) and the water that in Persimmon tannin solution. The size and morphology of Ag-ZnO nanocomposites were investigated by scanning electron microscopy (SEM) and field emission scanning electron microscopy(FE-SEM). The antibacterial properties of nanocomposites were examined by minimal bactericidal concentration(MBC). Results showed that this kind of antibacterial nanocomposites composites(ANPs) have excellent antibacterial abilities and without aggregation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kameoka Kai. The Development of Persimmon in Anti-bacterial Coating[R]. Department of Ehime Experimental Study Industry, 2005, 43: 71

    CAS  Google Scholar 

  2. Morones J R, Elechiguerra J L, Camacho A, et al. The Bactericidal Effect of Silver Nanoparticles[J]. Journal of Nanotechnology, 2005, 16: 2 346–2 353

    CAS  Google Scholar 

  3. Bahadur H, Srivastava A K, Sharma R K, et al. Morphologies of Sol-Gel Derived Thin Films of ZnO Using Different Precursor Materials and Their Nanostructures[J]. Nanoscale Research Letters, 2007, 2(10): 469–475

    Article  CAS  Google Scholar 

  4. Ohira T, Yamamoto O, Iida Y, et al. Antibacterial Activity of ZnO Powder with Crystallographic Orientation[J]. Journal of Materials Science: Materials in Medicine, 2008, 19(3): 1 407–1 412

    Article  CAS  Google Scholar 

  5. Yamamoto O, Komatsu M, Sawai J, et al. Effect of Lattice Constant of Zinc Oxide on Antibacterial Characteristics[J]. Journal of Materials Science: Materials in Medicine, 2004, 15(8): 847–851

    Article  CAS  Google Scholar 

  6. Sawai J, Igarashi H, Hashimoto A, et al. Evaluation of Growth Inhibitory Effect of Ceramics Powder Slurry on Bacteria by Conductance Method[J]. Journal of Chemical Engineering of Japan, 1995, 28(3): 288–293

    Article  CAS  Google Scholar 

  7. Sawai J, Saito I, Kanou F, et al. Mutagenicity Test of Ceramic Powder Which Have Growth Inhibitorory Effect on Bacteria[J]. Journal of Chemical Engineering of Japan, 1995, 28(3): 352–354

    Article  CAS  Google Scholar 

  8. Sawai J, Igarashi H, Hashimoto A, et al. Effect of Particle Size and Heating Temperature of Ceramic Powders on Antibacterial Activity of Their Slurries[J]. Journal of Chemical Engineering of Japan, 1996, 29(2): 251–256

    Article  CAS  Google Scholar 

  9. Sawai J, Kawada E, Kanou F, et al. Detection of Active Oxygen Generated From Ceramic Powders Having Antibacterial Activity[J]. Journal of Chemical Engineering of Japan, 1996, 29(4): 627–633

    Article  CAS  Google Scholar 

  10. Gojova A, Guo B, Kota R S, et al. Induction of Inflammation in Vascular Endothelial Cells by Metal Oxide Nanoparticles: Effect of Particle Composition[J]. Environmental Health Perspectives, 2007, 115(3): 403–405

    Article  CAS  Google Scholar 

  11. Karlsson H L, Gustafsson J, Cronholm P. Size-dependent Toxicity of Metal Oxide Particles-A Comparison Between Nano-and Micrometer Size[J]. Toxicology Letters, 2009, 188(2): 112–118

    Article  CAS  Google Scholar 

  12. Ballal A, Manna A C. Regulation of Superoxide Dismutase (sod) Genes by SarA in Staphylococcus Aureus[J]. Journal of Bacteriolgy, 2009,191: 3 301–3 310

    CAS  Google Scholar 

  13. Ballal A, Manna A C. Control of Thioredoxin Reductase Gene (trxB) Transcription by SarA in Staphylococcus Aureus[J]. Journal of Bacteriolgy, 2010, 192(1): 336–345

    Article  CAS  Google Scholar 

  14. Padmavathy N, Vijayaraghavan R. Enhanced Bioactivity of ZnO Nanoparticles-An Antimicrobial Study[J]. Science and Technology of Advanced Materials, 2008, 9: 35 004

    Article  Google Scholar 

  15. Morones J R, Elechiguerra J L, Camacho A, et al. The Bactericidal Effect of Silver Nanoparticles[J]. Nanotechnology, 2005, 16: 2 346–2 349

    Article  CAS  Google Scholar 

  16. Feng Q L, Wu J, Chen G Q, et al. A Mechanistic Study of the Antibacterial Effect of Silver Ions on Escherichia Coli and Staphylococcus Aureus[J]. Journal of Biomedical Materials Research, 2000, 52(4): 662–668

    Article  CAS  Google Scholar 

  17. Du Xinmin, Gang Hang. NMR Sudy of Sol-Gel Transition of Ti(OBu)4 [J].J.Journal of Inorganic Materials,1991,6(4):495–498

    CAS  Google Scholar 

  18. Marini M, De Niederhausern S, Iseppi R, et al. Antibacterial Activity of Plastics Coated With Silver-doped Organic-inorganic Hybrid Coatings Prepared by Sol-gel Processes[J]. Biomacromolecules, 2007, 8(4): 1 246–1 254

    Article  CAS  Google Scholar 

  19. Lee P C, Meisel D. Adsorption and Surface-Enhanced Raman of Dyes on Silver and Gold Sols[J]. The Journal of Physical Chemistry, 1982, 86(17): 3 391–3 395

    Article  CAS  Google Scholar 

  20. Wang X, Wu H F, Kuang Q, et al. Shape-Dependent Antibacterial Activities of Ag2O Polyhedral Particles[J]. Langmuir, 2009, 26(4): 2 774–2 778

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shunlin Cheng  (程顺林).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Cheng, S., Wang, F. et al. Synthesis and characterization of natural polymer/inorganic antibacterial nanocomposites. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 28, 1044–1047 (2013). https://doi.org/10.1007/s11595-013-0816-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-013-0816-0

Key words

Navigation