Skip to main content
Log in

Influence of coupled chemo-mechanical process on corrosion characteristics in reinforcing bars

  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

We studied the corrosion characteristics of reinforcing bars in concrete under different corrosion conditions. The area-box (AB) value was used to classify the shape of pitting corrosion morphology in meso-scale, and fractographs of reinforcing bars with different corrosion morphology were discussed in micro- and macro-scales. The results show that the existence of the tensile stress affects the corrosion characteristics of reinforcing bars. The pitting morphology and fractograph of reinforcing bars exhibit a statistical fractal feature. The linear regression model fits the relationship between fractal dimensions of corrosion morphology and fractal dimension of fractograph fairly well. Using fractal dimension as the characterization parameter can not only reflect the characteristics of pitting corrosion morphology in reinforcing bars, but also reveal the fracture feature of corroded reinforcing bars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Koleva D A, de Wit J H W, van Breugel K, et al. Correlation of Microstructure, Electrical Properties and Electrochemical Phenomena in Reinforced Mortar. Breakdown to Multi-Phase Interface Structures. Part II: Pore Network, Electrical Properties and Electrochemical Response[J]. Mater. Charact., 2008, 59(6):801–815

    Article  CAS  Google Scholar 

  2. Koleva D A, van Breugel K, de Wit J H W, et al. Correlation of Microstructure, Electrical Properties and Electrochemical Phenomena in Reinforced Mortar. Breakdown to Multi-Phase Interface Structures. Part I: Microstructural Observations and Electrical Properties[J]. Mater. Charact., 2008,59(3):290–300

    Article  CAS  Google Scholar 

  3. Saremi M, Mahallati E. A Study on Chloride-Induced Depassivation of Mild Steel in Simulated Concrete Pore Solution[J]. Cem. Concr. Res., 2002,32(12):1 915–1 921

    Article  CAS  Google Scholar 

  4. Yuan Y S, Ji Y S. Modeling Corroded Section Configuration of Steel Bar in Concrete Structure[J]. Constr. Build. Mater., 2009, 23(6): 2 461–2 466

    Article  Google Scholar 

  5. Almusallam A A. Effect of Degree of Corrosion on the Properties of Reinforcing Steel Bars[J]. Constr. Build. Mater., 2001,15(8):361–368

    Article  Google Scholar 

  6. Du Y G, Clark L A, Chan A H C. Residual Capacity of Corroded Reinforcing Bars[J]. Mag. Concr. Res., 2005,57(3):135–147

    Article  CAS  Google Scholar 

  7. Jaffer S J, Hansson C M. Chloride-Induced Corrosion Products of Steel in Cracked-Concrete Subjected to Different Loading Conditions[J]. Cem. Concr. Res., 2009,39(2):116–125

    Article  CAS  Google Scholar 

  8. Ahn W, Reddy D V. Galvanostatic Testing for the Durability of Marine Concrete under Fatigue Loading[J]. Cem. Concr. Res., 2001,31(3):343–349

    Article  CAS  Google Scholar 

  9. Apostolopoulos C A, Papadopoulos M P, Pantelakis S G. Tensile Behavior of Corroded Reinforcing Steel Bars BSt 500(s)[J]. Constr. Build. Mater., 2006,20(9):782–789

    Article  Google Scholar 

  10. Papadakis V G, Apostolopoulos C A. Consequences of Steel Corrosion on the Ductility Properties of Reinforcement Bar[J]. Constr. Build. Mater., 2008,22(12): 2 316–2 324

    Google Scholar 

  11. Mandelbrot B B, Passoja D E, Paullay A J. Fractal Character of Fracture Surfaces of Metals[J]. Nature, 1984,308(5 961):721–722

    Article  CAS  Google Scholar 

  12. Costa J M, Sagués F, Vilarrasa M. Fractal Patterns from Corrosion Pitting[J]. Corros. Sci., 1991,32(5–6):665–668

    Article  CAS  Google Scholar 

  13. Azevedo C R F, Marques E R. Three-Dimensional Analysis of Fracture, Corrosion and Wear Surfaces[J]. Eng. Fail. Anal., 2010,17(1):286–300

    Article  Google Scholar 

  14. Codaro E N, Nakazato R Z, Horovistiz A L, et al. An Image Processing Method for Morphology Characterization and Pitting Corrosion Evaluation[J]. Mat. Sci. Eng. A-Struct., 2002,334(1–2):298–306

    Article  Google Scholar 

  15. Silva J W J, Bustamante A G, Codaro E N, et al. Morphological Analysis of Pits Formed on Al 2024-T3 in Chloride Aqueous Solution[J]. Appl. Surf. Sci., 2004,236(1–4):356–365

    Article  CAS  Google Scholar 

  16. Charkaluk E, Bigerelle M, Iost A. Fractals and Fracture[J]. Eng. Fract. Mech., 1998, 61(1):119–139

    Article  Google Scholar 

  17. Parrington R J. Fractography of Metals and Plastics[J]. Plast. Eng., 2000,56(12):54–59

    CAS  Google Scholar 

  18. Zhang Z L, Thaulow C, Odegard J. A Complete Gurson Model Approach for Ductile Fracture[J]. Eng. Fract. Mech., 2000,67(2):155–168

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunxiang Qian  (钱春香).

Additional information

Funded by 973 Program (No.2009CB623200), National Natural Science Foundation of China (No.51008276), Ningbo Scientific and Technological Innovation Team (No.2011B81005) and Ningbo Natural Science Foundation (No.2011A610075)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, Y., Qian, C. Influence of coupled chemo-mechanical process on corrosion characteristics in reinforcing bars. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 28, 538–543 (2013). https://doi.org/10.1007/s11595-013-0727-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-013-0727-0

Key words

Navigation