Skip to main content
Log in

Influence of drying methods on fractal geometric characteristics of mesoporous silica aerogels

  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

Chemical modification/ambient drying method and freeze drying method were introduced to research the synthesis of mesoporous silica aerogels. By analyzing N2 gas adsorption/desorption isotherms, the fractal geometric characteristics of gels were focused. The overall surface fractal dimensions were determined by analyzing N2 gas adsorption branch and a Frenkel-Halsey-Hill (FHH) equation was empolyed to determine surface fractal dimension D f. It is found that, during ambient drying process, V TMCS/V Wetgel ratio plays a crucial role in the changes of geometric feature, the key point is 50%, when the ratio is lower, and surface roughness increases with the ratio, when it exceeds 50%, the surface is almost unaffected by the modification. While freeze drying always tends to get larger D f, freeze drying process could cause a rough surface of the gels. Compared with traditional porosity and specific surface area analyses, fractal geometry may be expected to be favorable for mesoporous structural analyses of materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S S Kistler. Coherent Expanded-Aerogels [J]. J. Phys. Chem., 1932, 36(1): 52–64

    Article  CAS  Google Scholar 

  2. S D Bhagat, Y H Kim, Y S Ahn, et al. Rapid Synthesis of Water-glass Based Aerogels by in situ Surface Modification of the Hydrogels[J]. Appl. Surf. Sci., 2007, 253(6): 3 231–3 236

    Article  CAS  Google Scholar 

  3. J Fricke. Aerogels-highly Tenuous Solids with Fascinating Properties [J]. J. Non-Cryst. Solids, 1988, 100(1–3): 169–173

    Article  CAS  Google Scholar 

  4. J Fricke, A Emmerling. Aerogels[J]. J. Am. Ceram. Soc., 1992, 75(8): 2 027–2 035

    Article  CAS  Google Scholar 

  5. C E Carraher. Silica Aerogels-Properties and Uses[J]. Polym. News, 2005, 30(12): 386–388

    Article  CAS  Google Scholar 

  6. J M Schultz, K I Jensen, F H Kristiansen. Super Insulating Aerogel Glazing [J]. Sol. Energy Mater. Sol. Cells, 2005, 89(2–3): 275–285

    CAS  Google Scholar 

  7. C Folgar, D Folz, C Suchicital, et al. Microstructural Evolution in Silica Aerogel [J]. J. Non-Cryst. Solids, 2007, 353(16–17): 1 483–1 490

    CAS  Google Scholar 

  8. Q Tang, T Wang. Preparation of Silica Aerogel from Rice Hull Ash by Supercritical Carbon Dioxide Drying[J]. J. Supercrit. Fluids, 2005, 35(1): 91–94

    Article  CAS  Google Scholar 

  9. M Schmidt, F Schwertfeger. Applications for Silica Aerogel Products[J]. J. Non-Cryst. Solids, 1998, 225(1): 364–368

    Article  CAS  Google Scholar 

  10. C J Lee, G S Kim, S H Hyun. Synthesis of Silica Aerogels from Waterglass via New Modified Ambient Drying[J]. J. Mater. Sci., 2002, 37(11): 2 237–2 241

    Article  CAS  Google Scholar 

  11. A V Rao, E Nilsen, M A Einarsrud. Effect of Precursors, Methylation Agents and Solvents on the Physicochemical Properties of Silica Aerogels Prepared by Atmospheric Pressure Drying Method [J]. J. Non-Cryst. Solids, 2001, 296(3): 165–171

    Article  Google Scholar 

  12. F Shi, L J Wang. Synthesis and Characterization of Silica Aerogels by a Novel Fast Ambient Pressure Drying Process[J]. Mater. Lett., 2006, 60(29-30): 3 718–3 722

    Article  CAS  Google Scholar 

  13. S R Mukai, H Nishihara, H Tamon. Porous Properties of Silica Gels with Controlled Morphology Synthesized by Unidirectional Freezegelation [J]. Micropor. Mesopor. Mater., 2003, 63(1-3): 43–51

    Article  CAS  Google Scholar 

  14. S V Kalinin, L I Kheifets, A I Mamchik, et al. Influence of the Drying Technique on the Structure of Silica Gels[J]. J. Sol-Gel Sci. Techn., 1999, 15(1): 31–35

    Article  CAS  Google Scholar 

  15. S J Choi, H C Park, R Stevens. Change of Pore Structure in Freezedried Silica Gel During Calcination[J]. J. Mater. Sci., 2004, 39(3): 1 037–1 040

    CAS  Google Scholar 

  16. P Pfeifer, D Avnir. Chemistry in Noninteger Dimensions Between Two and Three[J]. J. Chem. Phys., 1983, 79(7): 3 558–3 560

    Article  CAS  Google Scholar 

  17. D Avnir, D Farin, P Pfeifer. Molecular Fractal Surfaces[J]. Nature, 1984, 308: 261–263

    Article  CAS  Google Scholar 

  18. C K Lee, C S Tsay. Surface Fractal Dimensions of Alumina and Aluminum Borate from Nitrogen Isotherms [J]. J. Phys. Chem. B, 1998, 102(21): 4 123–4 130

    Article  CAS  Google Scholar 

  19. M Sato, T Sukegawa, T Suzuki, et al. Surface Fractal Dimension of Less-Crystalline Carbon Micropore Walls[J]. J. Phys. Chem. B, 1997, 101(10): 1 845–1 850

    Article  CAS  Google Scholar 

  20. A P Terzyk, P A Gauden, G Rychlicki, et al. Fractal Dimension of Microporous Carbon on the Basis of Polanyi-dubinin Theory of Adsorption. Part IV. The Comparative Analysis of Two Alternative Solutions of the Overall Adsorption Isotherm Equation for Microporous Fractal Solids[J]. Colloids Surf., A: Physicochem. Eng. Asp., 1999, 152(3): 293–313

    Article  CAS  Google Scholar 

  21. L Wang, S Y Zhao. Synthesis and Characteristics of Mesoporous Silica Aerogels with One-step Solvent Exchange/surface Modification[J]. J. Wuhan Uni. Techn. — Mater. Sci. Ed., 2009, 24(4): 613–618

    Article  CAS  Google Scholar 

  22. H Tamon, H Ishizaka, T Yamamoto, et al. Preparation of Mesoporous Carbon by Freeze Drying [J]. Carbon, 1999, 37(12): 2 049–2 055

    Article  CAS  Google Scholar 

  23. E P Barrett, L G Joyner, P P Halenda. The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Nitrogen Isotherms [J]. J. Am. Chem. Soc., 1951, 73(1): 373–380

    Article  CAS  Google Scholar 

  24. S J Gregg, K S W Sing, H W Salzberg. Adsorption Surface Area and Porosity [J]. J. Electrochem. Soc., 1967, 114: 279C

    Article  Google Scholar 

  25. M J Watt-Smith, K J Edler, S P Rigby. An Experimental Study of Gas Adsorption on Fractal Surfaces[J]. Langmuir, 2005, 21(6): 2 281–2 292

    Article  CAS  Google Scholar 

  26. S I Pyun, C K Rhee. An Investigation of Fractal Characteristics of Mesoporous Carbon Electrodes with Various Pore Structures[J]. Electrochim. Acta, 2004, 49(24): 4 171–4 180

    Article  CAS  Google Scholar 

  27. H P Xie. Introduction to Fractals-Rock Mechanics[M]. Beijing: Sci. Publ., 1996

    Google Scholar 

  28. L Liu, X Wang. Fractal Analysis of Bentonite Porosity by Using Nitrogen Adsorption Isotherms[J]. J. Chem. Eng. Chin. Uni., 2003, 17(5): 591–595

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shanyu Zhao  (赵善宇).

Additional information

Funded by the National Mega-Project of Scientific & Technical Supporting Programs, Ministry of Science & Technology of China (No.2006BAJ04A 04), and Science Foundation of Liaoning Province, China (No.2008S190)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, S., Xu, H., Wang, L. et al. Influence of drying methods on fractal geometric characteristics of mesoporous silica aerogels. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 28, 476–482 (2013). https://doi.org/10.1007/s11595-013-0716-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-013-0716-3

Key words

Navigation