Skip to main content
Log in

Memory effect up to room-temperature in Ni/Ni2P core-shell structured nanoparticles

  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

Memory effect has been studied in the system using magnetic nanoparticles with Ni nanocore encapsulated by non-magnetic and oxidation-resistant Ni2P nanoshell acquired through surface-phosphatizing Ni nanoparticles. The self-assembled array with interparticle spacing of about 6 nm shows memory effect up to 200 K below its average blocking temperature of 260 K. And reducing the interparticle spacing of the self-assembled array via annealing can further enlarge the temperature range of memory effect up to room-temperature. The memory effect can be understood based on the thermal relaxation theory of single-domain magnetic nanoparticles. Furthermore, the read-write magnetic coding is realized based on the temperature changes, using the memory effect up to room-temperature, which may be useful for future memory devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S D Bader. Colloquium: Opportunities in Nanomagnetism[J]. Rev. Mod. Phys., 2006, 78(1): 1–15

    Article  CAS  Google Scholar 

  2. Y W Jun, J W Seo, J Cheon. Nanoscaling Laws of Magnetic Nanoparticles and Their Applicabilities in Biomedical Sciences[J]. Acc. Chem. Res., 2008, 41(2): 179–189

    Article  CAS  Google Scholar 

  3. Y Sun, M B Salamon, K Garnier, et al. Memory Effects in an Interacting Magnetic Nanoparticle System[J]. Phys. Rev. Lett., 2003, 91(16): 167 206

    Article  Google Scholar 

  4. S Chakraverty, M Bandyopadhyay, S Chatterjee, et al. Memory in a Magnetic Nanoparticle System: Polydispersity and Interaction Effects[J]. Phys. Rev. B, 2005, 71(5): 054 401

    Article  Google Scholar 

  5. W Z Wang, J J Deng, J Lu, et al. Memory Effect in a System of Zincblende Mn-rich Mn(Ga)As Nanoclusters Embedded in GaAs[J]. Appl. Phys. Lett., 2007, 91(20): 202 503

    Google Scholar 

  6. J Park, E Kang, S U Son, et al. Monodisperse Nanoparticles of Ni and NiO: Synthesis, Characterization, Self-Assembled Superlattices, and Catalytic Applications in the Suzuki Coupling Reaction[J]. Adv. Mater., 2005, 17(4): 429–434

    Article  CAS  Google Scholar 

  7. H P Shao, Y Q Huang, H S Lee, et al. Cobalt Nanoparticles Synthesis from Co(CH3COO)2 by Thermal Decomposition[J]. J. Magn. Magn. Mater., 2006, 304(1): e28–e30

    Article  CAS  Google Scholar 

  8. P Li, J G Guan, Q J Zhang, et al. Preparation and Characterization of Monodisperse Nickel Nanoparticles by Polyol Process[J]. J. Wuhan Univ. Technol.-Mater. Sci. Ed., 2005, 20(4): 35–37

    Article  Google Scholar 

  9. X F Zheng, S L Yuan, Z M Tian, et al. Nickel/Nickel Phosphide Core-Shell Structured Nanoparticles: Synthesis, Chemical, and Magnetic Architecture[J]. Chem. Mater., 2009, 21(20): 4 839–4 845

    Article  CAS  Google Scholar 

  10. S J Jang, W J Kong, H Zeng. Magnetotransport in Fe3O4 Nanoparticle Arrays Dominated by Noncollinear Surface Spins[J]. Phys. Rev. B, 2007, 76(21): 212 403

    Article  Google Scholar 

  11. H T Yang, D Hasegawa, M Takahashi, et al. Achieving a Noninteracting Magnetic Nanoparticle System Through Direct Control of Interparticle Spacing[J]. Appl. Phys. Lett., 2009, 94(1): 013 103

    Article  Google Scholar 

  12. L Néel. Théorie Du Traínage Magnétique Des Ferromagnétiques En grains Fins Avec Application Aux Terres Cuites[J]. Ann. Géophys., 1949, 5: 99–136

    Google Scholar 

  13. W F Brown. Thermal Fluctuations of a Single-Domain Particle[J]. Phys. Rev., 1963, 130(5): 1 677–1 686

    Article  Google Scholar 

  14. C J Bae, S Angappane, J G Park, et al. Experimental Studies of Strong Dipolar Interparticle Interaction in Monodisperse Fe3O4 Nanoparticles[J]. Appl. Phys. Lett., 2007, 91(10): 102 502

    Article  Google Scholar 

  15. V Singh, M S Seehra, J Bonevich. Nickel-silica Nanocomposite: Variation of the Blocking Temperature with Magnetic Field and Measuring Frequency[J]. J. Appl. Phys., 2008, 103(7): 07D 524

    Google Scholar 

  16. F Wang, J Kim, Y J Kim, et al. Spin-glass Behavior in LuFe2O4[J]. Phys. Rev. B, 2009, 80(2): 024 419

    Article  Google Scholar 

  17. W C Nunes, E D Biasi, C T Meneses, et al. Magnetic Behavior of Ni Nanoparticles with High Disordered Atomic Structure[J]. Appl. Phys. Lett., 2008, 92(18): 183 113

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanning Duan  (段寒凝).

Additional information

Funded by the National Natural Science Foundation of China (No. 11174092)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duan, H., Yuan, S., Zheng, X. et al. Memory effect up to room-temperature in Ni/Ni2P core-shell structured nanoparticles. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 28, 467–470 (2013). https://doi.org/10.1007/s11595-013-0714-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-013-0714-5

Key words

Navigation