Skip to main content
Log in

Synthesis and tribological behaviors of Ti3SiC2 material prepared by vacuum sintering technique

  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

The bulk Ti3SiC2 specimens with less than 1 wt% TiC impurity were prepared by vacuum sintering technique, and the average grain size was about 5–6 μm in the elongated direction. When the sintering temperature, soaking time and heating rate were 1 400 °C, 1 h and 10 °C·min−1, respectively, the highest relative density of Ti3SiC2 specimens could reach 97.8%. Meanwhile, the lowest coefficient of friction (COF) and wear rate (WR) of the Ti3SiC2 samples were 0.55 and 1.37×10−3 mm3(Nm)−1 at a sliding speed of 0.35 m/s, load pressure of 10 N and ambient condition, respectively. The COF of the Ti3SiC2 sample reduced with the increasing of the load pressure, while the WRs fluctuated little. The WR increased with the increasing of the sliding speed, and weakly influenced the COF. These changing behaviors could be attributed to the presence and coverage of the amorphous mixture oxide film of Ti, Si, Al, and Fe on the Ti3SiC2 friction surface. The self-antifriction mechanism led to reducing of the COF. The increasing of the WR was attributed to the wearing consumption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M W Barsoum. The M n+1AXn Phases: a New Class of Solids; Thermodynamically Stable Nanolaminates[J]. Prog. Solid St. Chem., 2000, 28(1–4): 201–281

    Article  CAS  Google Scholar 

  2. P Eklund, M Beckers, U Jansson, et al. The M n+1AXn Phases: Materials Science and Thin-film Processing[J]. Thin Solid Films, 2010, 518(8): 1–28

    Article  Google Scholar 

  3. M W Barsoum, D Brodkin, T El-Raghy. Layered Machinable Ceramics for High Temperature Applications[J]. Scripta Mater., 1997, 36(4): 535–541

    CAS  Google Scholar 

  4. T El-Raghy, M W Barsoum, M Sika. Reaction of Al with Ti3SiC2 in the 800–1 000 °C Temperature Range[J]. Mater. Sci. Eng., A, 2001, 298(1-2): 174–178

    Article  Google Scholar 

  5. T El-Raghy, P Blau, M W Barsoum. Effect of Grain Size on Friction and Wear Behavior of Ti3SiC2[J]. Wear, 2000, 238(2): 125–130

    Article  CAS  Google Scholar 

  6. S L Yang, Z M Sun, Q Q Yang, et al. Effect of Al Addition on the Synthesis of Ti3SiC2 Bulk Material by Pulse Discharge Sintering Process[J]. J. Eur. Ceram. Soc., 2007, 27(16): 4 807–4 812

    Article  CAS  Google Scholar 

  7. Z M Sun, S L Yang, H Hashimoto. Effect of Al on the Synthesis of Ti3SiC2 by Reactively Sintering Ti-SiC-C Powder Mixtures[J]. J. Alloys Compd., 2007, 439(1-2): 321–325

    Article  CAS  Google Scholar 

  8. Z M Sun, S L Yang, H Hashimoto. Ti3SiC2 Powder Synthesis[J]. Ceram. Int., 2004, 30(7): 1 873–1 877

    CAS  Google Scholar 

  9. Z F Zhang, Z M Sun, H Hashimoto. Low Temperature Synthesis of Ti3SiC2 from Ti/SiC/C Powders[J]. Mater. Sci. Technol., 2004, 20(10):1 252–1 256

    CAS  Google Scholar 

  10. S L Yang, M S Zheng, H Hashimoto, et al. Synthesis of Single-phase Ti3SiC2 Powder[J]. J. Eur. Ceram. Soc., 2003, 23(16): 3 147–3 152

    Article  CAS  Google Scholar 

  11. Y Zhang, G P Ding, Y C Zhou, et al. Ti3SiC2-a Self-lubricating Ceramic[J]. Mater. Lett., 2002, 55(4): 285–289

    Article  CAS  Google Scholar 

  12. S Myhra, J WB Summers, E H Kisi. Ti3SiC2-a Layered Ceramic Exhibiting Ultra-low Friction[J]. Mater. Lett., 1999, 39(1): 6–11

    Article  CAS  Google Scholar 

  13. Z M Sun, Y C Zhou, S Li. Tribological Behavior of Ti3SiC2 Based Material[J]. J. Mater. Sci. Technol., 2000, 18(2): 142–145

    Google Scholar 

  14. S Gupta, D Filimonov, V Zaitsev, et al. Ambient and 550 °C Tribological Behavior of Select MAX Phases against Ni-based Superalloys[J]. Wear, 2008, 264(3-4): 270–278

    Article  CAS  Google Scholar 

  15. Y M Luo, W Pan, S Q Li, et al. Synthesis and Mechanical Properties of In-situ Hot-pressed Ti3SiC2 Polycrystals[J]. Ceram. Int., 2002, 28(2): 227–230

    Article  CAS  Google Scholar 

  16. H B Zhang, Y C Zhou, Y W Bao, et al. Intermediate Phases in Synthesis of Ti3SiC2 and Ti3Si(Al)C2 Solid Solutions from Elemental Powders[J]. J. Eur. Ceram. Soc., 2006, 26(12): 2 373–2 380

    Article  CAS  Google Scholar 

  17. D T Wan, Y C Zhou, Y W Bao, et al. In Situ Reaction Synthesis and Characterization of Ti3Si(Al)C2/SiC Composites[J]. Ceram. Int., 2006, 32(8): 883–890

    Article  CAS  Google Scholar 

  18. A Ganguly, T Zhen, M W Barsoum. Synthesis and Mechanical Properties of Ti3GeC2 and Ti3(SixGe1−x )C2 (x=0.5, 0.75) Solid Solutions[J]. J. Alloys Compd., 2004, 376(1–2): 287–295

    Article  CAS  Google Scholar 

  19. Z F Zhang, Z M Sun, H Hashimoto, et al. A New Synthesis Reaction of Ti3SiC2 from Ti/TiSi2/TiC Powder Mixtures Through Pulse Discharge Sintering (PDS) Technique[J]. Mat. Res. Innovat., 2002, 5(3–4): 185–189

    Article  CAS  Google Scholar 

  20. Z F Zhang, Z M Sun, H Hashimoto, et al. Application of Pulse Discharge Sintering (PDS) Technique to Rapid Synthesis of Ti3SiC2 from Ti/Si/C Powders[J]. J. Eur. Ceram. Soc., 2002, 22(16): 2 957–2 961

    CAS  Google Scholar 

  21. Z M Sun, Z F Zhang, H Hashimoto, et al. Ternary Compound Ti3SiC2: Part I: Pulse Discharge Sintering Synthesis[J]. Mater. Trans., 2002, 43(3): 428–431

    Article  CAS  Google Scholar 

  22. J Q Zhu, B C Mei, L P He, et al. Synthesis of Ti3SiC2 by Spark Plasma Sintering (SPS) of Elemental Powders[J]. Trans. Nonferrous Met. Soc. China, 2003, 13(1): 46–49

    CAS  Google Scholar 

  23. B Y Liang, S Z Jin, M Z Wang. Low-temperature Fabrication of High Purity Ti3SiC2[J]. J. Alloys Compd., 2008, 460(1–2): 440–443

    Article  CAS  Google Scholar 

  24. N F Gao, J T Li, D Zhang, et al. Rapid Synthesis of Dense Ti3SiC2 by Spark Plasma Sintering[J]. J. Eur. Ceram. Soc., 2002, 22(13): 2 365–2 370

    Article  CAS  Google Scholar 

  25. S L Yang, Z M Sun, H Hashimoto. Synthesis of Ti3SiC2 Powder from 1Ti/(1+x)Si/2TiC Powder Mixtures[J]. J. Alloys Compd., 2004, 368(1-2): 318–325

    Article  CAS  Google Scholar 

  26. S L Yang, Z M Sun, H Hashimoto. Reaction in Ti3SiC2 Powder Synthesis from a Ti-Si-TiC Powder Mixture[J]. J. Alloys Compd., 2004, 368(1-2): 312–317

    Article  CAS  Google Scholar 

  27. H X Zhai, Z Y Huang, M X Ai. Tribological Behaviors of Bulk Ti3SiC2 and Influences of TiC Impurities[J]. Mater. Sci. Eng., A, 2006, 435–436: 360–370

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoliang Shi  (史晓亮).

Additional information

Funded by the Natural Science Foundation of Hubei Province (No.2012FFB05104), the National Natural Science Foundation of China (No.51275370), the Fundamental Research Funds for the Central Universities (No.2010-II-020), the Project for Science and Technology Plan of Wuhan City (No.2013010501010139), the Academic Leader Program of Wuhan City (No.201150530146), and the Project for Teaching and Research Project of Wuhan University of Technology (No.2012016)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, X., Zhai, W., Peng, M. et al. Synthesis and tribological behaviors of Ti3SiC2 material prepared by vacuum sintering technique. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 28, 417–424 (2013). https://doi.org/10.1007/s11595-013-0706-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-013-0706-5

Key words

Navigation