Skip to main content

Advertisement

Log in

In-Situ Preparation and thermal shock resistance of mullite-cordierite heat tube material for solar thermal power

  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

In order to improve the thermal shock resistance of solar thermal heat transfer tube material, the mullite-cordierite composite ceramic as solar thermal heat transfer tube material were fabricated by pressureless sintering using α-Al2O3, Suzhou kaolin, talc, and feldspar as starting materials. The important parameter for solar thermal transfer tube such as water absorption (W a), bulk density (D b), and the mechanical properties were investigated. The phase composition and microstructure of the composite ceramics were analyzed by XRD and SEM. The experimental results show that the B3 sintered at 1 300 °C and holding for 3 h has an optimum thermal shock resistance. The bending strength loss rate of B3 is only 2% at 1 100°C by air quenching-strength test and the sample can endure 30 times thermal shock cycling, and the water absorption the bulk density and bending strength are 0.32%, 2.58 g·cm−3, and 125.59 MPa respectively. The XRD analysis indicated that the phase compositions of the sample were mullite, cordierite, corundum, and spinel. The SEM images illustrate that the cordierite is prismatic grain and the mullite is nano rod, showing a good thermal shock resistance for composite ceramics as potential solar thermal power material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R Buck, C Barth, M Ecket, et al. Dual-Receiver Concept for Solar Towers [J]. Sol. Energy, 2006, 80(10): 1 249–1 254

    Article  Google Scholar 

  2. C W Forsberg, P F Peterson, H H Zhao. High-Temperature Liquid-Fluoride-Salt Closed-Brayton-Cycle Solar Power Towers [J]. J. Sol. Energy. Eng. Trans. ASME, 2007, 129(2): 141–146

    Article  CAS  Google Scholar 

  3. K Hennecke, B Hoffschmidt, G Koll, et al. The Solar Power Tower Julich: A Solar Thermal Power Plant for Test and Demonstration of Air Receiver Technology[C]. in ISES Solar World Congress 2007, Solar Energy and Human Settlement, 2007

    Google Scholar 

  4. R E Gold, D L Harrod. Refractory Metal Alloys for Fusion Reactor Applications [J]. J. Nucl. Mater., 1979, 85–86(2):805–815

    Article  Google Scholar 

  5. R Viswanathan, W Bakker. Materials for Ultrasupercritical Coal Power Plants-Boiler Materials: Part I [J]. J. Mater. Eng. Perform., 2001, 10: 81–95

    Article  CAS  Google Scholar 

  6. R Viswanathan, W Bakker. Materials for Ultrasupercritical Coal Power Plants-Turbine Materials: Part II [J]. J. Mater. Eng. Perform., 2001, 10: 96–101

    Article  CAS  Google Scholar 

  7. K L Murty, I Charit. Structural Materials for Gen-IV Nuclear Reactors: Challenges and Opportunities [J]. J. Nucl. Mater., 2008, 383: 189–195

    Article  CAS  Google Scholar 

  8. S Ukai, M Harada, H Okada, et al. Alloying Design of Oxide Dispersion Strengthened Ferritic Steel for Long Life FBRs Core Materials[J]. J. Nucl. Mater., 1993, 204: 65–73

    Article  CAS  Google Scholar 

  9. C J Boehlert, S C Longanbach. A Comparison of the Microstructure and Creep Behavior of Cold Rolled HAYNES230 Alloy and HAYNES282 Alloy [J]. Mater. Sci. Eng. A, 2011, 528: 4 888–4 898

    CAS  Google Scholar 

  10. D Allen, J P Keustermans, S Gijbels, et al. Creep Rupture and Ductility of as-Manufactured and Service-Aged Nickel Alloy IN617 Materials and Welds[J]. Mater. High. Temp., 2004, 21: 55–60

    Article  CAS  Google Scholar 

  11. X H XU, G H JIAO, J F WU, et al. Effect of Nano-ZrO2 on Microstructure and Thermal Shock Behaviour of Al2O3/SiC Composite Ceramics Used in Solar Thermal Power[J]. J. Wuhan. Univ. Technol.—Mater. Sci. Ed., 2011, 4: 285–289

    Google Scholar 

  12. X H XU, X H MA, J F WU, et al. Preparation and Thermal Shock Resistance of Cordierite-Mullite Composite Ceramic for Solar Thermal Power [J]. J. Wuhan. Univ. Technol., 2012, 34(1):1–6

    Google Scholar 

  13. X H XU, X H MA, J F WU, et al. In-Situ Preparation and Thermal Shock Behavior of Corundum-Mullite-Magnesium Aluminate Spinel Composite Ceramic[J]. J. Chin. Ceram. Soc., 2012, 40(10), 1 387–1 393

    CAS  Google Scholar 

  14. S R Braganc, C P Bergmann. A View of Whitewares Mechanical Strength and Microstructure[J]. Ceram. Int., 2003, 29:801–806

    Article  Google Scholar 

  15. J H Chesters. Refractories: Production and Properties[M]. Berkeley: The Iron and Steel Institute of Materials, 1983

    Google Scholar 

  16. R Harada, N Sugiyama, H Ishida. Al2O3-Strengthened Feldspathic Porcelain Bodies: Effects of the Amount and Particle Size of Alumina[J]. Ceram. Eng. Sci. Proc., 1996, 17(1): 88–98

    CAS  Google Scholar 

  17. G W Brindley, M Nakahira. The Kaolinite-Mullite Reaction Series: I. A Survey of Outstanding Problems[J]. J. Am. Ceram. Soc., 1959, 42: 311–314

    Article  CAS  Google Scholar 

  18. G W Brindley, M Nakahira. The Kaolinite-Mullite Reaction Series: II.Metakaolin [J]. J. Am. Ceram. Soc., 1959, 42:315–318

    Google Scholar 

  19. G W Brindley, M Nakahira. The Kaolinite-Mullite Reaction Series: III. The High Temperature Phases[J]. J. Am. Ceram. Soc., 1959, 42: 319–324

    Article  CAS  Google Scholar 

  20. K Dana, S Das, Swapan, et al. Effect of Substitution of Fly Ash for Quartz in Triaxial Kaolin-Quartz-Feldspar System[J]. J. Eur. Ceram. Soc., 2004, 24: 3 169–3 175

    CAS  Google Scholar 

  21. H l Tan, W Yang. Toughening Mechanisms of Nano-Composite Ceramics [J]. Mech. Mater., 1998, 30:111–123

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaohong Xu  (徐晓虹).

Additional information

Funded by the Major State Basic Research Development Program of China (973 Program) (No.2010CB227105)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, X., Ma, X., Wu, J. et al. In-Situ Preparation and thermal shock resistance of mullite-cordierite heat tube material for solar thermal power. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 28, 407–412 (2013). https://doi.org/10.1007/s11595-013-0704-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-013-0704-7

Key words

Navigation