Skip to main content
Log in

Heterogenous expression of Synechocystis sp. PCC 6803 deg proteases and their possible roles on phycobiliprotein degradation in vitro

  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

The Synechocystis sp. PCC 6803 genome harbours a Deg gene family consisting of three members, htrA (degP, slr1204), hhoA (degQ, sll1679) and hhoB (degS, sll1427). This work provided biochemical characterization of HhoA, HtrA and HhoB from Synechocystis sp. PCC 6803. Firstly mature HhoA, HhoB and HtrA from Synechocystis sp. PCC 6803 were cloned and expressed as soluble recombinant his-tagged fusion protein in Escherichia coli. Then the proteolytic activity of HhoA, HhoB and HtrA was tested using casein, bovine serum albumin, five recombinant chromoproteins and cyanobacterial phycocyanin as substrates in vitro. The experimental results showed that HhoA and HtrA had proteolytic activity on casein, five recombinant chromoproteins and cyanobacterial phycocyanin. No proteolytic activity of HhoB was found using all substrates in vitro, indicating functional difference among Deg proteases from Synechocystis sp. PCC 6803. Therefore, the results indicated the biochemical properties of HhoA and HtrA on hydrolysis of proteins and phycobiliproteins in vitro, which implicated that they were proteases possibly involved in phycobiliprotein degradation in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Clausen T, Southan C, Ehrmann M. The HtrA Family of Proteases: Implications for Protein Composition and Cell Fate[J]. Mol. Cell., 2002, 10: 443–455

    Article  CAS  Google Scholar 

  2. Huesgen P F, Scholz P, Adamska W. The Serine Protease HhoA from Synechocystis sp. Strain PCC 6803: Substrate Specificity and Formation of a Hexameric Complex are Regulated by the PDZ Domain[J]. J. Bacteriol., 2007, 189: 6611–6618

    Article  CAS  Google Scholar 

  3. Jansen T, Kidron H, Taipaleenmaki H, Salminen T, Maenpaa P. Transcriptional Profiles and Structural Models of the Synechocystis sp. PCC 6803 DEG Proteases[J]. Photosynth Res., 2005, 84: 57–63

    CAS  Google Scholar 

  4. Fulda S, Huang F, Nilsson F, Hagemann M, Norling B. Proteomics of Synechocystis sp. strain PCC 6803 - Identification of Periplasmic Proteins in Cells Grown at Low and High Salt Concentrations[J]. Eur. J. Biochem., 2000, 267: 5 900–5 907

    CAS  Google Scholar 

  5. Huang F, Hedman E, Funk C, Kieselbach T, Schroder W P, Norling B. Isolation of Outer Membrane of Synechocystis sp. PCC 6803 and Its Proteomic Characterization[J]. Mol. Cell Proteomics, 2004, 3: 586–595

    Article  CAS  Google Scholar 

  6. Silva P, Choi Y J, Hassan H A G, Nixon P J. Involvement of the HtrA Family of Proteases in the Protection of the Cyanobacterium Synechocystis PCC 6803 from Light Stress and in the Repair of Photosystem II[J]. Philos. T Roy. Soc. B, 2002, 357: 1 461–1 467

    Article  CAS  Google Scholar 

  7. Sokolenko A, Pojidaeva E, Zinchenko V, Panichkin V, Glaser V M, Herrmann R G, Shestakov S V. The Gene Complement for Proteolysis in the Cyanobacterium Synechocystis sp. PCC 6803 and Arabidopsis Thaliana Chloroplasts[J]. Curr. Genet., 2002, 41: 291–310

    Article  CAS  Google Scholar 

  8. Karradt A, Sobanski J, Mattow J, Lockau W, Baier K. NblA, a Key Protein of Phycobilisome Degradation, Interacts with ClpC, a HSP100 Chaperone Partner of a Cyanobacterial Clp Protease[J]. J. Biol. Chem., 2008, 283: 32394–32403

    Article  CAS  Google Scholar 

  9. Collier J L, Grossman A R. A Small Polypeptide Triggers Complete Degradation of Light-harvesting Phycobiliproteins in Nutrient-deprived Cyanobacteria[J]. EMBO J., 1994, 13: 1 039–1 047

    CAS  Google Scholar 

  10. Baier K, Nicklisch S, Grundner C, Reinecke J, Lockau W. Expression of Two nblA-homologous Genes is Required for Phycobilisome Degradation in Nitrogen-starved Synechocystis sp. PCC 6803 [J]. FEMS Microbiol. Lett., 2001, 195: 35–39

    Article  CAS  Google Scholar 

  11. Sambrook J, Fritsch E F, Maniatis T. Molecular Cloning: A Laboratory Manual[M]. New York, Cold Spring Harbor Laboratory Press, 1989

    Google Scholar 

  12. Zhao K H, Su P, Li J, Tu J M, Zhou M, Bubenzer C, Scheer H. Chromophore Attachment to Phycobiliprotein Betasubunits: Phycocyanobilin:Cysteine-beta84 Phycobiliprotein Lyase Activity of CpeS-like Protein from Anabaena sp. PCC 7120[J]. J. Biol. Chem., 2006, 281: 8 573–8 581

    CAS  Google Scholar 

  13. Hilditch C M, Balding P, Jenkins R, Smith A J, Rogers L J. R-phycoerythrin Form the Macroalga Corallina Officinalis (Rhodophyceae) and Application of a Derived Phycofluor Probe for Detecting Sugar-binding Sites on Cell Membranes[J]. J. Appl. Phycol., 1991, 3: 345–354

    CAS  Google Scholar 

  14. Laemmli U K. Cleavage of Structural Proteins During the Assembly of the Head of Bacteriophage T4[J]. Nature, 1970, 227: 680–685

    Article  CAS  Google Scholar 

  15. Berkelman T R, Lagarias J C. Visualization of Bilin-linked Peptides and Proteins in Polyacrylamide Gels[J]. Anal. Biochem., 1986, 156: 194–201

    Article  CAS  Google Scholar 

  16. Bradford M M. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-dye Binding[J]. Anal. Biochem., 1976, 72: 248–254

    Article  CAS  Google Scholar 

  17. Boussiba S, Richmond A E. Isolation, and Characterization of Phycocyanins from the Blue-green Algae Spirulina Platensis[J]. Arch. Microbiol., 1979, 120: 5

    Article  Google Scholar 

  18. Thompson J D, Gibson T J, Plewniak F, Jeanmougin F, Higgins D G. The CLUSTAL_X Windows Interface: Flexible Strategies for Multiple Sequence Alignment Aided by Quality Analysis tools[J]. Nucleic. Acids. Res., 1997, 25: 4 876–4 882

    Article  CAS  Google Scholar 

  19. Zhao K H, Su P, Tu J M, Wang X, Liu H, Ploscher M, Eichacker L, Yang B, Zhou M, Scheer H. Phycobilin:Cystein-84 Biliprotein Lyase, a Near-universal Lyase for Cysteine-84- binding Sites in Cyanobacterial Phycobiliproteins[J]. Proc. Natl. Acad. Sci. USA, 2007, 104: 14 300–14 305

    CAS  Google Scholar 

  20. Yamanaka G, Glazer A N. Dynamic Aspects of Phycobilisome Structure[J]. Arch. Microbiol., 1980, 124: 39–47

    Article  CAS  Google Scholar 

  21. Barker M, Vriesd R, Nield J, Komenda J, Nixon P J. The Deg Proteases Protect Synechocystis sp. PCC 6803 During Heat and Light Stresses but are not Essential for Removal of Damaged D1 Protein During the Photosystem two Repair Cycle [J]. J. Biol. Chem., 2006, 281: 30 347–30 355

    CAS  Google Scholar 

  22. Huesgen P F, Schuhmann H, Adamska I. DEG/HtrA Proteases as Components of a Network for Photosystem II Quality Control in Chloroplasts and Cyanobacteria[J]. Res. Microbiol., 2009, 160: 726–732

    Article  CAS  Google Scholar 

  23. Piven I, Ajlani G, Sokolenko A. Phycobilisome Linker Proteins are Phosphorylated in Synechocystis sp. PCC 6803[J]. J. Biol. Chem., 2005, 280: 21 667–21 672

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Zhou  (周明).

Additional information

Funded by the National Natural Science Foundation of China (Nos.30870541, 30870519)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Diao, H., Zhou, T., Zhang, J. et al. Heterogenous expression of Synechocystis sp. PCC 6803 deg proteases and their possible roles on phycobiliprotein degradation in vitro . J. Wuhan Univ. Technol.-Mat. Sci. Edit. 26, 1049–1058 (2011). https://doi.org/10.1007/s11595-011-0361-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-011-0361-7

Key words

Navigation