Skip to main content
Log in

Future resources for eco-building materials: I. Metallurgical slag

  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

In order to make an effectivily recycle use of iron and steel slags that are main industrial wastes generated in Chinese metallurgical industry, the current technologies for reprocessing and recycling these wastes into eco-building materials were reviewed, such as preparing cement-steel slag blended cement with steel slag after metal recovery, using the fine powder of blast furnace slag (BFS) for manufacturing slag cement and high performance concrete. A further research on using these available resources more efficiently were discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pioro L S, Pioro I L. Reprocessing of Metallurgical Slag into Materials for the Building Industry[J]. Waste Management, 2004, 24(4): 371–379

    Article  PubMed  CAS  Google Scholar 

  2. Shen Huiting, Forssberg E. An Overview of Recovery of Metals from Slags[J]. Waste Management, 2003, 23(10): 933–949

    Article  PubMed  CAS  Google Scholar 

  3. Motz H, Geiseler J. Products of Steel Slag an Opportunity to Save Natural Resources[J]. Waste Management, 2001, 21(3):285–293

    Article  PubMed  CAS  Google Scholar 

  4. Topkaya Y, Sevinc N, Günaydm A. Slag Treatment at Kardemir Integrated Iron and Steel Works[J]. Int. J. Miner. Process, 2004, 74(1): 31–39

    Article  CAS  Google Scholar 

  5. Qiao J Z, Hu C L, Chen Z X. Research and Application of Steel Slag on Road Material[J]. Abroad Technology of Building Material, 2005, 26(1): 6–8

    Google Scholar 

  6. Geiseler J. Use of Steel Works Sag in Europe[J]. Waste management, 1996, 16(1–3): 59–62

    Article  CAS  Google Scholar 

  7. Osborne G J. Duriability of Portland Blast-furnace Slag Cement Concrete[J]. Cement and Concrete Composites, 1999, 21(1): 11–21

    Article  CAS  Google Scholar 

  8. Rai Amit, Prabakar J, Raju C B, et al. Metallurgical Slag as a Component in Blended Cement[J]. Construction and Building Materials, 2002, 16(8): 489–484

    Article  Google Scholar 

  9. Joachim Harder. Development of Klinker Substitutes in the Cement Industry[J]. ZKG International, 2006, 59(1): 58–64

    Google Scholar 

  10. Pal S C, Mukherjee A, Pathak S R. Investigation of Hydraulic Activity of Ground Granulated Blast Furnace Slag in Concrete[J]. Cement and Concrete Research, 2003, 33(9): 1 481–1 486

    Article  CAS  Google Scholar 

  11. Shi Caijun, Qian Jueshi. High Performance Cementing Materials from Industrial Slag-a Review[J]. Resources Conservation & Recycling, 2000, 29(3): 195–207

    Article  Google Scholar 

  12. Proctor D M, Fehling K A, Shay E C, et al. Physical and Chemical Characteristics of Blast Furnace, Basic Oxygen Furnace, and Electric arc Furnace Steel Industry Slags[J]. Enviromental Science and Technology, 2000, 34(2): 1 576–1 582

    CAS  Google Scholar 

  13. Xu Y H, Lu W X, et al. Research and Development in Activation of Steel Slag Activity[J]. Journal of Shanghai University (Natural Science), 2004, 10(1): 91–93 (in Chinese)

    CAS  Google Scholar 

  14. Huang Y G, Di H F, Zhu Ch Y. Approaches to Comprehensive Utilizing of Steel Slag[J]. Industrial Safety and Environmental Protection, 2005, 31(1): 44–45 (in Chinese)

    CAS  Google Scholar 

  15. Zhu M, Hu Sh G, Ding Q J. Investigation on Applying Steel Slag to Cement Based Materials[J]. Journal of Wuhan University of Technology, 2005, 27(1): 48–51(in Chinese)

    Google Scholar 

  16. Mindess Sidney, Francis Young J, Darwin David. Concrete[M]. New York: Pearson Education, Inc, 2003: 22

    Google Scholar 

  17. Huang X, Wang F. An Overview of Steel Slag Processing and Utilization[J]. Manganese Ore of China, 2001, 3

  18. Rasosavljevic Slobodan, Milic Dragan, Gavrilovski Milorad. Mineral Processing of a Converter Slag and its Use in Iron Ore Sintering[J]. Magnetic and aelectrical Separation, 1996, 7: 201–211

    Google Scholar 

  19. Svyazhin A G, Shakhpazov E H, Romanovich D A. Recycling of Slags in Ferrous Metallurgy[J]. Metallurgist (USSR), 1998, 42: 129–132

    Google Scholar 

  20. Jin Q, Xu J Y, Gao W B. New Technology of Steel Slag Processing and its Application as Second Resource at Baosteel[J]. Technology of Baosteel, 2005(3): 12–15 (in Chinese)

  21. Hiroaki Okumara. Recycling of Iron-and Steelmaking Slags in Japan[C]. in:Proceedings of the 1st International Conference on Processing Materials for Properties: 803–806

  22. Fregeau-Wu E, Pingolet-Brandom S, Iwasaki I. Liberation Analysis of Slow-cooled Steelmaking Slag: Implication for Phosphorus Removal[C]. Proceedings of the 1st International Conference on Processing Materials for Properties: 153–156

  23. Guan J H. The Development of Technology and its Characteristic for BSSF Processing[J]. Metallurgical Collections, 2005, 155: 31–33 (in Chinese)

    Google Scholar 

  24. Chen Y M, Zhang H T. Investigation on Applying Pulverized Steel Slag Powder as Highly Active Addition for Cement[J]. Cement, 2001, 5: 1–4 (in Chinese)

    Google Scholar 

  25. Pal S C, Mukherjee A, Pathak S R. Investigation of Hydraulic Activity of Ground Granulated Blast Furnace Slag in Concrete[J]. Cement and Concrete Research, 2003, 33(9): 1 481–1 486

    Article  CAS  Google Scholar 

  26. Mindess Sidney, Francis Young J, Darwin David. Concrete[M]. Pearson Education, 2003. 93

  27. Regourd M. Characterization of Thermal Activation of Slag Cement[C]. Proceedings of the 7th International Congress on the Chemistry of Cements (Paris), 1980: 105–111

  28. Swamy R N, Bouikni A. Some Engineering Properties of Slag Concrete as Influenced by Mix Proportioning and Curing[J]. ACI Mater, 1990, 87: 210–220

    CAS  Google Scholar 

  29. Frearson J P H. Sulfate Resistance of Combination of Portland Cement and Blast Furnace Slag[J]. ACI Publ, 1986, 2: 1 495–1 524

    Google Scholar 

  30. Xu D L, Chen Y X, Li H. On the Advances of Cement Science and Technology in China[C]. Proceedings of the 6th International Conference on Cement and Concrete(Xi’an), 2006: 3–14

  31. Swamy R N. Design for Durability and Strength Through the Use of Fly Ash and Slag in Concrete[C]. CANMET/ACI International Workshop on Supplementary Cementing Materials, Superplasticizers and Other Chemical Admixtures in Concrete, Toronto, Canada, American Concrete Institute, 1998: 1–72

    Google Scholar 

  32. Öner M. A Study of Intergrinding and Separate Grinding of Blast Furnace Slag Cement[J]. Cement and Concrete Research, 2000, 30(3): 473–480

    Article  Google Scholar 

  33. Mehra S M. Slag Grinding by Roller Press-Major Issues[J]. Int. J. Miner. Process, 1998, 53(3): 87–97

    Article  CAS  MathSciNet  Google Scholar 

  34. Maeda Y, Chikada T, Nagao Y, et al. Studies on the Properties of Super Workable Concrete Using Ground Granulated Blast Furnace Slag[C]. Malhotra V M (Ed.) Fly ash, Silica Fume, Slag and Natural Pozzolans in Concrete, Proceeding, 6th CANMET/ACI International Conference, Bangkok, 1998: 837–856

  35. Li Y X, Chen Y M, Wei J X, et al. A Study on the Relationship between Porosity of the Cement Paste with Mineral Additives and Compressive Strength of Mortar based on this Paste[J]. Cement and Concrete Research, 2006, 36(9): 1 740–1 743

    CAS  Google Scholar 

  36. Lee W K W, Deventer van J S J. The Interface between Natural Siliceous Aggregates and Geopolymers[J]. Cement and Concrete Research, 2004, 34(2): 195–206

    Article  CAS  Google Scholar 

  37. Lee K M, Lee H K, et al. Autogenous Shrinkage of Concrete Containing Ganulated Blast-furnace Slag[J]. Cement and Concrete Research, 2006, 36(7): 1 279–1 285

    CAS  Google Scholar 

  38. Antonio A, Melo Neto. Drying and Autogenous Shrinkage of Pastes and Mortars with Activated Slag Cement[J]. Cement and Concrete Research, 2008, 38(4): 565–574

    Article  Google Scholar 

  39. Hu S G Jiang C S. Research on Hydration of Steel Slag Cement Activated with Water-glass[J]. Journal of Wuhan University of Technology-Materials Science, 2001(1): 37–40

  40. Li D X, Wu X Q. The Influence of Compound Admixtures on the Properties of High-content Slag Cement[J]. Cement and Concrete Research, 2000, 30(1): 45–50

    Article  CAS  Google Scholar 

  41. Kumar Sanjay, Kumar Rakesh, et al. Mechanical Activation of Granulated Blast Furnace Slag and its Effect on the Properties and Structure of Portland Slag Cament[J]. Cement and Concrete Composites, 2008, 30(8): 679–685

    Article  CAS  Google Scholar 

  42. Bougara A, Lynsdale C, Ezziane K. Activation of Algerian Slag in Mortars[J]. Construction and Building Materials, 2009, 23(1): 542–547

    Article  Google Scholar 

  43. Sobolev Konstantin. Mechano-chemical Modification of Cement with High Volumes of Blast Furnace Slag[J]. Cement and Concrete Composites, 2005, 27(7–8): 848–853

    Article  CAS  Google Scholar 

  44. Hu S G, Wang H X, et al. Bonding and Abrasion Resistance of Geopolymeric Repair Material Made with Steel Slag [J]. Cement and Concrete Composites, 2008, 30(3): 239–244

    Article  CAS  Google Scholar 

  45. Sofi M, Deventer Van J S J, et al. Engineering Properties of Inorganic Polymer Concrete (IPCs)[J]. Cement and Concrete Research, 2007, 37(2): 251–257

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Delong Xu  (徐德龙).

Additional information

Funded by the National Natural Sciences Foundation of China (No. 50872105) and Shaanxi Provincial Grand-Tech Project of China (No. 2008ZKC04-04)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, D., Li, H. Future resources for eco-building materials: I. Metallurgical slag. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 24, 451–456 (2009). https://doi.org/10.1007/s11595-009-3451-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-009-3451-z

Key words

Navigation