Skip to main content
Log in

Minimizing the influence spread over a network through node interception

  • Original Paper
  • Published:
Optimization Letters Aims and scope Submit manuscript

Abstract

We consider the problem of determining the optimal node interception strategy during influence propagation over a (directed) network \(G=(V,A)\). More specifically, this work aims to find an interception set \(D \subseteq V\) such that the influence spread over the remaining network \(G \backslash D\) under the linear threshold diffusion model is minimized. We prove its NP-hardness, even in the case when G is an undirected graph with unit edge weights. An exact algorithm based on integer linear programming and delayed constraint generation is proposed to determine the most critical nodes in the influence propagation process. Additionally, we investigate the technique of lifting inequalities of minimal activation sets. Experiments on the connected Watts-Strogatz small-world networks and real-world networks are also conducted to validate the effectiveness of our methodology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Algorithm 1
Fig. 1
Algorithm 2
Algorithm 3

Similar content being viewed by others

Data availability

The data used in this paper have been previously detailed within the document. Additional data will be made available on reasonable request.

Notes

  1. https://www.gurobi.com/documentation/current/refman/parameters.html.

References

  1. Kempe, D., Kleinberg, J., Tardos, É.: Maximizing the spread of influence through a social network. In: Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 137–146 (2003)

  2. Li, Y., Fan, J., Wang, Y., Tan, K.-L.: Influence maximization on social graphs: A survey. IEEE Trans. Knowl. Data Eng. 30(10), 1852–1872 (2018)

    Article  Google Scholar 

  3. Acemoglu, D., Ozdaglar, A., Yildiz, E.: Diffusion of innovations in social networks. In: 2011 50th IEEE Conference on Decision and Control and European Control Conference, pp. 2329–2334 (2011). IEEE

  4. Fazeli, A., Ajorlou, A., Jadbabaie, A.: Competitive diffusion in social networks: quality or seeding? IEEE Trans. Control Network Syst. 4(3), 665–675 (2016)

    Article  MathSciNet  Google Scholar 

  5. Budak, C., Agrawal, D., El Abbadi, A.: Limiting the spread of misinformation in social networks. In: Proceedings of the 20th International Conference on World Wide Web, pp. 665–674 (2011)

  6. Cheng, C.-H., Kuo, Y.-H., Zhou, Z.: Outbreak minimization vs influence maximization: an optimization framework. BMC Med. Inform. Decis. Mak. 20(1), 1–13 (2020)

    Article  Google Scholar 

  7. Yao, S., Fan, N., Hu, J.: Modeling the spread of infectious diseases through influence maximization. Optim. Lett. 16(5), 1563–1586 (2022)

    Article  MathSciNet  Google Scholar 

  8. Coró, F., D’angelo, G., Velaj, Y.: Link recommendation for social influence maximization. ACM Trans. Know. Disc. Data (TKDD) 15(6), 1–23 (2021)

    Article  Google Scholar 

  9. Khalil, E., Dilkina, B., Song, L.: Cuttingedge: influence minimization in networks. In: Proceedings of Workshop on Frontiers of Network Analysis: Methods, Models, and Applications at NIPS, pp. 1–13 (2013)

  10. Kimura, M., Saito, K., Motoda, H.: Minimizing the spread of contamination by blocking links in a network. In: Aaai, vol. 8, pp. 1175–1180 (2008)

  11. Charkhgard, H., Subramanian, V., Silva, W., Das, T.K.: An integer linear programming formulation for removing nodes in a network to minimize the spread of influenza virus infections. Discret. Optim. 30, 144–167 (2018)

    Article  MathSciNet  Google Scholar 

  12. Wang, S., Zhao, X., Chen, Y., Li, Z., Zhang, K., Xia, J.: Negative influence minimizing by blocking nodes in social networks. In: Proceedings of the 17th AAAI Conference on Late-Breaking Developments in the Field of Artificial Intelligence, pp. 134–136 (2013)

  13. Nandi, A.K., Medal, H.R.: Methods for removing links in a network to minimize the spread of infections. Comput. Operat. Res. 69, 10–24 (2016)

    Article  MathSciNet  Google Scholar 

  14. Gillen, C.P., Veremyev, A., Prokopyev, O.A., Pasiliao, E.L.: Critical arcs detection in influence networks. Networks 71(4), 412–431 (2018)

    Article  MathSciNet  Google Scholar 

  15. Yang, L., Li, Z., Giua, A.: Containment of rumor spread in complex social networks. Inf. Sci. 506, 113–130 (2020)

    Article  MathSciNet  Google Scholar 

  16. Yang, L.: Influence minimization and rumor containment in social networks. PhD thesis, Aix-Marseille (2019)

  17. Lalou, M., Tahraoui, M.A., Kheddouci, H.: The critical node detection problem in networks: a survey. Comput. Sci. Rev. 28, 92–117 (2018)

    Article  MathSciNet  Google Scholar 

  18. Lewis, J.M., Yannakakis, M.: The node-deletion problem for hereditary properties is np-complete. J. Comput. Syst. Sci. 20(2), 219–230 (1980)

    Article  MathSciNet  Google Scholar 

  19. Yannakakis, M.: Node-deletion problems on bipartite graphs. SIAM J. Comput. 10(2), 310–327 (1981)

    Article  MathSciNet  Google Scholar 

  20. Xie, J., Zhang, F., Wang, K., Lin, X., Zhang, W.: Minimizing the influence of misinformation via vertex blocking. In: 2023 IEEE 39th International Conference on Data Engineering (ICDE), pp. 789–801. IEEE Computer Society, Los Alamitos, CA, USA (2023). https://doi.org/10.1109/ICDE55515.2023.00066

  21. Fischetti, M., Kahr, M., Leitner, M., Monaci, M., Ruthmair, M.: Least cost influence propagation in (social) networks. Math. Program. 170(1), 293–325 (2018)

    Article  MathSciNet  Google Scholar 

  22. Nannicini, G., Sartor, G., Traversi, E., Wolfler Calvo, R.: An exact algorithm for robust influence maximization. Math. Program. 183(1), 419–453 (2020)

    Article  MathSciNet  Google Scholar 

  23. Gu, Z., Nemhauser, G.L., Savelsbergh, M.W.: Lifted flow cover inequalities for mixed 0–1 integer programs. Math. Program. 85(3), 439–467 (1999)

    Article  MathSciNet  Google Scholar 

  24. Zeng, B., Richard, J.-P.P.: Sequence independent lifting for 0–1 knapsack problems with disjoint cardinality constraints. School of Industrial Engineering, Purdue University, West Lafayette (2006)

    Google Scholar 

  25. Dey, S.S., Richard, J.-P.: Linear-programming-based lifting and its application to primal cutting-plane algorithms. INFORMS J. Comput. 21(1), 137–150 (2009)

    Article  MathSciNet  Google Scholar 

  26. Leskovec, J., Krevl, A.: SNAP Datasets: stanford large network dataset collection. http://snap.stanford.edu/data (2014)

  27. Rossi, R.A., Ahmed, N.K.: The network data repository with interactive graph analytics and visualization. In: AAAI (2015). https://networkrepository.com/

  28. Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’networks. Nature 393(6684), 440–442 (1998)

  29. Leskovec, J., Kleinberg, J., Faloutsos, C.: Graph evolution: densification and shrinking diameters. ACM Trans. Know. Disc. Data (TKDD) 1(1), 2 (2007)

    Article  Google Scholar 

  30. Rozemberczki, B., Sarkar, R.: Characteristic functions on graphs: birds of a feather, from statistical descriptors to parametric models. In: Proceedings of the 29th ACM International Conference on Information and Knowledge Management (CIKM ’20), pp. 1325–1334 (2020). ACM

  31. Boguná, M., Pastor-Satorras, R., Díaz-Guilera, A., Arenas, A.: Models of social networks based on social distance attachment. Phys. Rev. E 70(5), 056122 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neng Fan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, S., Fan, N. & Krokhmal, P. Minimizing the influence spread over a network through node interception. Optim Lett (2024). https://doi.org/10.1007/s11590-024-02117-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11590-024-02117-w

Keywords

Navigation