Skip to main content
Log in

A fast approximation algorithm for the maximum 2-packing set problem on planar graphs

  • Original Paper
  • Published:
Optimization Letters Aims and scope Submit manuscript

Abstract

Given an undirected graph \(G=(V, E)\), a subset \(S\subseteq V\) is a 2-packing set if, for any pair of vertices \(u,v \in S\), the shortest path between them is at least three-edge long. Finding a 2-packing set of maximum cardinality is an NP-hard problem for arbitrary graphs. This paper proposes an approximation algorithm for the maximum 2-packing set problem for planar graphs. We show that our algorithm is at least \(\frac{\lambda -2}{\lambda }\) of the optimal (i.e. the approximation ratio is \(\frac{\lambda }{\lambda -2}\)), where \(\lambda\) is a constant related to how the proposed algorithm decomposes the input graph into smaller subgraphs. Then, we improve the solution given by our approximation algorithm by adding some vertices to the solution. Experimentally, we show that our improved algorithm computes a near-optimal 2-packing set. This algorithm is the first approximation algorithm for the maximum 2-packing set to the best of our knowledge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

Graph instances are available at the following link:https://github.com/trejoel/Approximate2Packing

Code Availability

Source code is available at the following link: https://github.com/trejoel/Approximate2Packing

References

  1. Agrawal, A., Klein, P., Ravi, R.: When trees collide: An approximation algorithm for the generalized steiner problem on networks. SIAM J. Comput. 24(3), 440–456 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alekseev, V.E., Boliac, R., Korobitsyn, D.V., Lozin, V.V.: Np-hard graph problems and boundary classes of graphs. Theoret. Comput. Sci. 389(1–2), 219–236 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Anand, R., Aggarwal, D., Kumar, V.: A comparative analysis of optimization solvers. J. Stat. Manag. Syst. 20(4), 623–635 (2017)

    Google Scholar 

  4. Baker, B.S.: Approximation algorithms for np-complete problems on planar graphs. J. ACM (JACM) 41(1), 153–180 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bansal, N.: Approximating independent sets in sparse graphs. In: proceedings of the twenty-sixth annual ACM-SIAM symposium on discrete algorithms, pp. 1–8. SIAM (2014)

  6. Chandler Sr, J.D.: Neighborhood-restricted achromatic colorings of graphs (2016)

  7. Cockayne, E.J., Dreyer, P.A., Jr., Hedetniemi, S.M., Hedetniemi, S.T.: Roman domination in graphs. Discret. Math. 278(1–3), 11–22 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ding, Y., Wang, J.Z., Srimani, P.K.: Self-stabilizing algorithm for maximal 2-packing with safe convergence in an arbitrary graph. In: 2014 IEEE international parallel & distributed processing symposium workshops, pp. 747–754. IEEE (2014)

  9. Feige, U.: Approximating maximum clique by removing subgraphs. SIAM J. Discret. Math. 18(2), 219–225 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  10. Feitelson, D.G.: Packing schemes for gang scheduling. In: workshop on job scheduling strategies for parallel processing, pp. 89–110. Springer (1996)

  11. Flores-Lamas, A., Fernández-Zepeda, J.A., Trejo-Sánchez, J.A.: Algorithm to find a maximum 2-packing set in a cactus. Theoret. Comput. Sci. 725, 31–51 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  12. Flores-Lamas, A., Fernández-Zepeda, J.A., Trejo-Sánchez, J.A.: A distributed algorithm for a maximal 2-packing set in Halin graphs. J. Parallel Distribut. Comput. 142, 62–76 (2020)

    Article  Google Scholar 

  13. Fomin, F.V., Kratsch, D.: Exact Exponential Algorithms, 1st edn. Springer-Verlag, Berlin, Heidelberg (2010)

    Book  MATH  Google Scholar 

  14. Fomin, F.V., Thilikos, D.M.: Dominating sets in planar graphs: branch-width and exponential speed-up. SIAM J. Comput. 36(2), 281–309 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gairing, M., Geist, R.M., Hedetniemi, S.T., Kristiansen, P.: A self-stabilizing algorithm for maximal 2-packing. Nordic J. Comput. 11, 1–11 (2004)

    MathSciNet  MATH  Google Scholar 

  16. Gairing, M., Goddard, W., Hedetniemi, S.T., Kristiansen, P., McRae, A.A.: Distance-two information in self-stabilizing algorithms. Parallel Process. Lett. 14(03n04), 387–398 (2004)

    Article  MathSciNet  Google Scholar 

  17. Garey, M., Johnson, D.: Computers and intractability - a guide to np-completeness.(1979). Google Scholar pp. 155–158

  18. Goddard, W., Hedetniemi, S.T., Jacobs, D.P., Trevisan, V.: Distance-k knowledge in self-stabilizing algorithms. Theoret. Comput. Sci. 399(1–2), 118–127 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  19. Gogna, A., Tayal, A.: Metaheuristics: review and application. J. Experiment. & Theor. Artif. Intell. 25(4), 503–526 (2013)

    Article  Google Scholar 

  20. González, M., López-Espín, J.J., Aparicio, J.: A parallel algorithm for matheuristics: a comparison of optimization solvers. Electronics 9(9), 1541 (2020)

    Article  Google Scholar 

  21. Gurobi Optimization, L.: Gurobi optimizer reference manual (2021). http://www.gurobi.com

  22. Hale, W.K.: Frequency assignment: theory and applications. Proc. IEEE 68(12), 1497–1514 (1980)

    Article  Google Scholar 

  23. Halldórsson, M.M., Kratochvıl, J., Telle, J.A.: Independent sets with domination constraints. Discret. Appl. Math. 99(1–3), 39–54 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  24. Hochbaum, D.S., Shmoys, D.B.: A best possible heuristic for the \(k\)-center problem. Math. Oper. Res. 10(2), 180–184 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  25. Hopcroft, J., Tarjan, R.: Efficient planarity testing. J. ACM (JACM) 21(4), 549–568 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  26. IBM: Cplex (1999). https://www.ibm.com/mx-es/analytics/cplex-optimizer

  27. Lamm, S., Sanders, P., Schulz, C., Strash, D., Werneck, R.F.: Finding near-optimal independent sets at scale. J. Heuristics 23(4), 207–229 (2017)

    Article  MATH  Google Scholar 

  28. Lozin, V., Milanič, M.: Maximum independent sets in graphs of low degree. In: proceedings of the eighteenth annual ACM-SIAM symposium on discrete algorithms, pp. 874–880. (2007)

  29. Manne, F., Mjelde, M.: A memory efficient self-stabilizing algorithm for maximal \(k\)-packing. In: symposium on self-stabilizing systems, pp. 428–439. Springer (2006)

  30. Mjelde, M.: \(k\)-packing and \(k\)-domination on tree graphs. Master’s thesis, The University of Bergen (2004)

  31. Niedermeier, R.: Invitation to fixed-parameter algorithms. Oxford lecture series in mathematics and its applications 31 (2002)

  32. Shi, Z.: A self-stabilizing algorithm to maximal 2-packing with improved complexity. Inf. Process. Lett. 112(13), 525–531 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  33. Sörensen, K., Glover, F.: Metaheuristics. Encyclopedia of operations research and management science 62, 960–970 (2013)

    Article  Google Scholar 

  34. Trejo-Sánchez, J.A., Fajardo-Delgado, D., Gutierrez-Garcia, J.O.: A genetic algorithm for the maximum 2-packing set problem. Int. J. Appl. Math. Comput. Sci. 30(1), 173–184 (2020)

    MathSciNet  MATH  Google Scholar 

  35. Trejo-Sánchez, J.A., Fernández-Zepeda, J.A.: A self-stabilizing algorithm for the maximal 2-packing in a cactus graph. In: 2012 IEEE 26th international parallel and distributed processing symposium workshops & PhD Forum, pp. 863–871. IEEE (2012)

  36. Trejo-Sánchez, J.A., Fernández-Zepeda, J.A.: Distributed algorithm for the maximal 2-packing in geometric outerplanar graphs. J. Parallel Distribut Comput. 74(3), 2193–2202 (2014)

    Article  MATH  Google Scholar 

  37. Trejo-Sánchez, J.A., Fernández-Zepeda, J.A., Ramírez-Pacheco, J.C.: A self-stabilizing algorithm for a maximal 2-packing in a cactus graph under any scheduler. Int. J. Found. Comput. Sci. 28(08), 1021–1045 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  38. Turau, V.: Efficient transformation of distance-2 self-stabilizing algorithms. J. Parallel Distribut. Comput. 72(4), 603–612 (2012)

    Article  MATH  Google Scholar 

  39. Vazirani, V.V.: Approximation algorithms. Springer Science & Business Media, Springer-Verlag GmbH, Heidelberg, Zweigniederlassung der Springer-Verlag GmbH, Berlin, Tiergartenstrasse 17, D-69121 Heidelberg (2013)

  40. Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms. Cambridge University Press, USA (2011)

    Book  MATH  Google Scholar 

  41. Woeginger, G.J.: Exact algorithms for np-hard problems: A survey. In: Combinatorial optimization–eureka, you shrink!, pp. 185–207. Springer, Springer-Verlag GmbH, Heidelberg, Zweigniederlassung der Springer-Verlag GmbH, Berlin, Tiergartenstrasse 17, D-69121 Heidelberg (2003)

  42. Yelbay, B., Birbil, Şİ, Bülbül, K., Jamil, H.: Approximating the minimum hub cover problem on planar graphs. Optimization Lett. 10(1), 33–45 (2016)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the National Council of Science and Technology, Mexico (CONACYT) with the Frontier Science Project no. 304006.

Funding

The National Council of Science and Technology, Mexico (CONACYT), through the Frontier Science Project no. 304006. A. Flores-Lamas is supported by the Engineering and Physical Sciences Research Council, EPSRC [EP/T00021X/1].

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed equally to this work —Joel Antonio Trejo-Sánchez: algorithm’s conception, design, and correctness proof. Francisco Alejandro Madera-Ramirez: algorithm’s conception, design and implementation. Jose Luis Lopez-Martinez: algorithm’s implementation and experiments’ design. José Alberto Fernandez-Zepeda: algorithm’s design and correctness proof. Alejandro Flores-Lamas: algorithm’s correctness proof and experiments’ design.

Corresponding author

Correspondence to Joel Antonio Trejo-Sánchez.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trejo-Sánchez, J.A., Madera-Ramírez, F.A., Fernández-Zepeda, J.A. et al. A fast approximation algorithm for the maximum 2-packing set problem on planar graphs. Optim Lett 17, 1435–1454 (2023). https://doi.org/10.1007/s11590-022-01939-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11590-022-01939-w

Keywords

Navigation