Skip to main content
Log in

Characterizations of the solution set for tangentially convex optimization problems

  • Original Paper
  • Published:
Optimization Letters Aims and scope Submit manuscript

Abstract

In convex optimization problems, characterizations of the solution set in terms of the classical subdifferentials have been investigated by Mangasarian. In quasiconvex optimization problems, characterizations of the solution set for quasiconvex programming in terms of the Greenberg–Pierskalla subdifferentials were given by Suzuki and Kuroiwa. In this paper, our attention focuses on the class of tangentially convex functions. Indeed, we study characterizations of the solution set for tangentially convex optimization problems in terms of subdifferentials. For this purpose, we use tangential subdifferentials and the Greenberg-Pierskalla subdifferentials and present necessary and sufficient optimality conditions for tangentially convex optimization problems. As a consequence, we investigate characterizations of the solution set in terms of tangential subdifferentials and the Greenberg–Pierskalla subdifferentials for tangentially convex optimization problems. Moreover, we compare our results with previous ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allevi, E., Martinez-Legaz, J.-E., Riccardi, R.: Optimality conditions for convex problems on intersections of non necessarily convex sets. J. Global Optim. 77, 143–155 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bagirov, A., Karmitsa, N., Makela, M.M.: Introduction to Nonsmooth Optimization: Theory. Practice and Software, Springer, New York (2014)

    Book  MATH  Google Scholar 

  3. Bertsekas, D., Nedic, D.A., Ozdeglar, E.: Convex Analysis and Optimization. Athena Scientific, Belmont, Massachusetts (2003)

    Google Scholar 

  4. Burke, J.V., Ferris, M.C.: Characterization of the solution sets of convex programs. Oper. Res. Lett. 10, 57–60 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  5. Daniilidis, A., Hadjisavvas, N., Martinez-Legaz, J.-E.: An appropriate subdifferential for quasiconvex functions. SIAM J. Opt. 12, 407–420 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  6. Dinh, N., Jeyakumar, V., Lee, G.M.: Lagrange multiplier characterizations of solution sets of constrained pseudolinear optimization problems. Optim. 55, 241–250 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Fang, D.H., Luo, X.F., Wang, X.Y.: Strong and total Lagrange dualities for quasiconvex programming. J. Appl. Math. (2014). https://doi.org/10.1155/2014/453912

  8. Ghafari, N., Mohebi, H.: Optimality conditions for nonconvex problems over nearly convex feasible sets. Arab. J. Math. (2021). https://doi.org/10.1007/s40065-021-00315-3

  9. Greenberg, H.J., Pierskalla, W.P.: Quasi-conjugate functions and surrogate duality. Cah. Cent. Étud. Rech. Opér. 15, 437–448 (1973)

    MathSciNet  MATH  Google Scholar 

  10. Gutierrez Diez, J.M.: Infragradientes y direcciones de decrecimiento. Rev. Real Acad. Cienc. Exact. Fis. Natur., Madrid 78, 523–532 (1984)

    MathSciNet  Google Scholar 

  11. Ho, Q.: Necessary and sufficient KKT optimality conditions in non-convex optimization. Optim. Lett. 11, 41–46 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ivanov, V.I.: Characterizations of solution sets of differentiable quasiconvex programming problems. J. Opt. Theory Appl. 181, 144–162 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  13. Jeyakumar, V., Lee, G.M., Dinh, N.: Lagrange multiplier conditions characterizing the optimal solution sets of cone-constrained convex programs. J. Opt. Theory Appl. 123, 83–103 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  14. Jeyakumar, V., Lee, G.M., Dinh, N.: Characterizations of solution sets of convex vector minimization problems. Eur. J. Oper. Res. 174, 1380–1395 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. Jeyakumar, V., Mohebi, H.: Characterizing best approximation from a convex set without convex representation. J. Approx. Theory 239, 113–127 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  16. Lemaréchal, C.: An introduction to the theory of nonsmooth optimization. Optim. 17, 827–858 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  17. Linh, N.T.H., Penot, J.-P.: Optimality conditions for quasiconvex programs. SIAM J. Opt. 17, 500–510 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. Mangasarian, O.L.: A simple characterization of solution sets of convex programs. Oper. Res. Lett. 7, 21–26 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  19. Martinez-Legaz, J.-E.: A generalized concept of conjugation. Lecture Notes Pure Appl Math. 86, 45–59 (1983)

    MathSciNet  MATH  Google Scholar 

  20. Martinez-Legaz, J.-E.: A new approach to symmetric quasiconvex conjugacy. Lecture Notes in Econom. and Math. Systems 226, 42–48 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  21. Martinez-Legaz, J.-E.: Quasiconvex duality theory by generalized conjugation methods. Optim. 19, 603–652 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  22. Martinez-Legaz, J.-E.: Optimality conditions for pseudoconvex minimization over convex sets defined by tangentially convex constraints. Opt. Lett. 9, 1017–1023 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  23. Mashkoorzadeh, F., Movahedian, N., Nobakhtian, S.: Optimality conditions for nonconvex constrained optimization problems. Numer. Funct. Anal. Opt. 40, 1918–1938 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  24. Moreau, J.J.: Inf-convolution, sous-additivité, convexité des fonctions numériques. J. Math. Pures Appl. 49, 109–154 (1970)

    MathSciNet  MATH  Google Scholar 

  25. Penot, J.-P.: What is quasiconvex analysis? Optim. 47, 35–110 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  26. Penot, J.-P.: Characterization of solution sets of quasiconvex programs. J. Opt. Theory Appl. 117, 627–636 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  27. Penot, J.-P., Volle, M.: On quasi-convex duality. Math. Oper. Res. 15, 597–625 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  28. Plastria, F.: Lower subdifferentiable functions and their minimization by cutting planes. J. Opt. Theory Appl. 46, 37–53 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  29. Pshenichnyi, B.N.: Necessary Conditions for an Extremum. Marcel Dekker Inc, New York (1971)

    Google Scholar 

  30. Suzuki, S., Kuroiwa, D.: Optimality conditions and the basic constraint qualification for quasiconvex programming. Nonlinear Anal. 74, 1279–1285 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  31. Suzuki, S., Kuroiwa, D.: Subdifferential calculus for a quasiconvex function with generator. J. Math. Anal. Appl. 384, 677–682 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  32. Suzuki, S., Kuroiwa, D.: Necessary and sufficient conditions for some constraint qualifications in quasiconvex programming. Nonlinear Anal. 75, 2851–2858 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  33. Suzuki, S., Kuroiwa, D.: Necessary and sufficient constraint qualification for surrogate duality. J. Optim. Theory Appl. 152, 366–367 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  34. Suzuki, S., Kuroiwa, D.: Some constraint qualifications for quasiconvex vector-valued systems. J. Global Opt. 55, 539–548 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  35. Suzuki, S., Kuroiwa, D.: Characterizations of the solution set for quasiconvex programming in terms of Greenberg-Pierskalla subdifferential. J. Global Optim. 62, 431–441 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  36. Suzuki, S., Kuroiwa, D.: Characterizations of the solution set for non-essentially quasiconvex programming. Opt. Lett. 11, 1699–1712 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  37. Suzuki, S.: Karush-Kuhn-Tucker type optimality condition for quasiconvex programming in terms of Greenberg-Pierskalla subdifferential. J. Global Opt. 79, 191–202 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  38. Long, X.J., Liu, J., Huang, N.J.: Characterizing the solution set for nonconvex semi-infinite programs involving tangential subdifferentials. Numer. Funct. Anal. Opt. 42, 279–297 (2021)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to the three anonymous referees and the Associate Editor for their helpful comments and valuable suggestions and criticism regarding an earlier version of this paper. The comments of the referees and the Associate Editor were very useful and they helped us to improve the paper significantly. The second author was partially supported by Mahani Mathematical Research Center, Shahid Bahonar University of Kerman, Iran [grant no: 99/3668].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Mohebi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beni-Asad, M., Mohebi, H. Characterizations of the solution set for tangentially convex optimization problems. Optim Lett 17, 1027–1048 (2023). https://doi.org/10.1007/s11590-022-01911-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11590-022-01911-8

Keywords

2010 (AMS) Mathematics Subject Classification

Navigation