Skip to main content

Advertisement

Log in

A VNS based framework for early diagnosis of the Alzheimer's disease converted from mild cognitive impairment

  • Original Paper
  • Published:
Optimization Letters Aims and scope Submit manuscript

Abstract

Mild cognitive impairment (MCI) is an intermediate stage between age-related cognitive decline. Alzheimer's disease (AD) is a more serious decline in dementia. Early identification of mild cognitive impairment with a high risk of Alzheimer's disease is very important for increasing the success rate of the treatment. In this study, we present a Variable Neighborhood Search (VNS) based framework that uses Magnetic Resonance Imaging (MRI) data to diagnose early conversion from MCI to AD. The proposed framework has been built in three main phases: preparing dataset, feature selection, and classification. After preparing the dataset, a VNS algorithm selects the most predictive MRI features for classification. Then, a Linear Support Vector Machine is utilized to classify the selected features. All data in this study are obtained from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database with 860 subjects, eight different monthly periods, and 286 features in each period. The results obtained from the framework outperform those of previous research in terms of accuracy, sensitivity, and specificity values. The results of this study demonstrate that our framework has a huge potential for early prediction and detection of mild cognitive impairment to Alzheimer's disease conversion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Alzheimer's Association: Alzheimer's disease facts and figures. Alzheimer's Dement, 4(2), 110–33 (2008)

  2. Barnes, D.E., Yaffe, K.: The projected effect of risk factor reduction on Alzheimer’s disease prevalence. Lancet Neurol. 10(9), 819–828 (2011)

    Article  Google Scholar 

  3. Beheshti, I., Demirel, H., Neuroimaging, A.D.: Probability distribution function-based classification of structural MRI for the detection of Alzheimer’s disease. Comput. Biol. Med. 64, 208–216 (2015)

    Article  Google Scholar 

  4. Beheshti, I., Demirel, H., Neuroimaging, A.D.: Feature-ranking-based Alzheimer’s disease classification from structural MRI. Magn. Reson Imaging 34(3), 252–263 (2016)

    Article  Google Scholar 

  5. Brunton, S., Ginestet, C., Muehlboeck, S., Westman, E., Simmons, A.: Cross-sectional, longitudinal and laterality measures of hippocampus, parahippocampus and entorhinal cortex in mild cognitive impairment. Alzheimers Dement. 9(4), P430 (2013)

    Google Scholar 

  6. Guo, H., et al.: Evaluation of common structural brain changes in aging and Alzheimer disease with the use of an MRI-based brain atrophy and lesion index: a comparison between T1WI and T2WI at 1.5 T and 3T. Am. J. Neuroradiol. 35(3), 504–512 (2014)

    Article  Google Scholar 

  7. Chaves, R., Ramirez, J., Gorriz, J.M., Puntonet, C.G.: Association rule-based feature selection method for Alzheimer’s disease diagnosis. Expert Syst. Appl. 39(14), 11766–11774 (2012)

    Article  Google Scholar 

  8. Cheng, B., Zhang, D. and Shen, D.: Domain transfer learning for MCI conversion prediction. In: Medical Image Computing and Computer-Assisted Intervention– MICCAI 2012 (p. 82–90). Springer, Berlin (2012)

  9. Choi, S.H., et al.: Estimating the validity of the Korean version of expanded clinical dementia rating (CDR) scale. J. Korean Neurol. Assoc. 19(6), 585–591 (2001)

    Google Scholar 

  10. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)

    Article  MATH  Google Scholar 

  11. Cui, Y., Liu, B., Luo, S., Zhen, X., Fan, M., Liu, T., et al.: Identification of conversion from mild cognitive impairment to Alzheimer’s disease using multivariate predictors. PLoS ONE 6(7), e21896 (2011). https://doi.org/10.1371/journal.pone.0021896

    Article  Google Scholar 

  12. Cuingnet, R., Gerardin, E., Tessieras, J., Auzias, G., Lehéricy, S., et al.: Automatic classification of patients with Alzheimer’s disease from structural MRI: a comparison of ten methods using the ADNI database. Neuroimage 56(2), 766–781 (2011)

    Article  Google Scholar 

  13. Davatzikos, C., Bhatt, P., Shaw, L.M., Batmanghelich, K.N., Trojanowski, J.Q.: Prediction of MCI to AD conversion, via MRI, CSF biomarkers, pattern classification. Neurobiol. Aging 32(12), 2322.e19-2322.e27 (2011). https://doi.org/10.1016/j.neurobiolaging.2010.05.023

    Article  Google Scholar 

  14. Dubois, B., Feldman, H.H., Jacova, C., et al.: Research criteria for the diagnosis of Alzheimer’s disease: revising the NINCDS–ADRDA criteria. Lancet Neurol. 6(8), 734–746 (2007)

    Article  Google Scholar 

  15. Fischl, B.: FreeSurfer. Neuroimage 62(2), 774–781 (2012)

    Article  Google Scholar 

  16. García-Torres, M., Gómez-Vela, F., Melián-Batista, B., Moreno-Vega, J.M.: High-dimensional feature selection via feature grouping: A Variable Neighborhood Search approach. Inf. Sci. 326, 102118 (2016)

    Article  MathSciNet  Google Scholar 

  17. Gaser, C., Franke, K., Klöppel, S., Koutsouleris, N., Sauer, H.: BrainAGE in mild cognitive impaired patients: Predicting the conversion to Alzheimer’s disease. Alzheimer’s disease neuroimaging initiative. PLoS ONE 8(6), e67346 (2013). https://doi.org/10.1371/journal.pone.0067346

    Article  Google Scholar 

  18. Gauthier, S., et al.: Mild cognitive impairment. Lancet 367(9518), 12621270 (2006)

    Article  Google Scholar 

  19. Gorji, H.T., Haddadnia, J.: A novel method for early diagnosis of Alzheimer’s disease based on pseudo Zernike moment from structural MRI. Neuroscience 305, 361–371 (2015)

    Article  Google Scholar 

  20. Hall, M.A.: Correlation-based feature selection for machine learning. The University of Waikato, (1999)

  21. Hansen, P., Mladenovic, N.: Variable neighborhood search. Comput. Oper. Res. 24, 1097–1100 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  22. Hanzel, D.K., Trojanowski, J.Q., Johnston, R.F., Loring, J.F.: High-throughput quantitative histological analysis of Alzheimer’s disease pathology using a confocal digital microscanner. Nat. Biotechnol. 17(1), 53–57 (1999)

    Article  Google Scholar 

  23. Latchoumane, C., Vialatte, F.B., Solé-Casals, J., Maurice, M., Wimalaratna, S.R., et al.: Multiway array decomposition analysis of EEGs in Alzheimer’s disease. J. Neurosci. Methods 207(1), 41–50 (2012)

    Article  Google Scholar 

  24. Lei, M., Shiyan, L., Chuanwen, J., Hongling, L., Yan, Z.: A review on the forecasting of wind speed and generated power. Renew. Sustain. Energy Rev. 13(4), 915–920 (2009)

    Article  Google Scholar 

  25. Liu, L., Fu, L., Zhang, X., Zhang, J., Zhang, X., et al.: Combination of dynamic (11)C-PIB PET and structural MRI improves diagnosis of Alzheimer’s disease. Psychiatry Res 233(2), 131–140 (2015)

    Article  Google Scholar 

  26. Maji, S., Berg, A.C., and Malik, J.: Classification using intersection kernel support vector machines is efficient. In IEEE Computer Vision and Pattern Recognition (2008)

  27. Moradi, E., et al.: Machine learning framework for early MRI-based Alzheimer’s conversion prediction in MCI subjects. Neuroimage 104, 398–412 (2015)

    Article  Google Scholar 

  28. Prestia, A., et al.: Prediction of AD dementia by biomarkers following the NIA-AA and IWG diagnostic criteria in MCI patients from three European memory clinics. Alzheimer’s Dement 11(10), 1191–1201 (2015)

    Article  Google Scholar 

  29. Refaeilzadeh, P, Tang, L and Liu, H (2009) Cross-validation. In Encyclopedia of database systems. Springer. p. 532–538.

  30. Shaffer, J.L., et al.: Predicting cognitive decline in subjects at risk for Alzheimer’s disease by using combined cerebrospinal fluid, MR imaging, and PET biomarkers. Radiology 266(2), 583–591 (2013)

    Article  Google Scholar 

  31. Westman, E., et al.: AddNeuroMed and ADNI: similar patterns of Alzheimer’s atrophy and automated MRI classification accuracy in Europe and North America. Neuroimage 58(3), 818–828 (2011)

    Article  Google Scholar 

  32. Wolz, R., Julkunen, V., Koikkalainen, J., Niskanen, E., Zhang, D.P., et al.: Multi-method analysis of MRI images in early diagnostics of Alzheimer’s disease. PLoS ONE 6(10), e25446 (2011). https://doi.org/10.1371/journal.pone.0025446

    Article  Google Scholar 

  33. Ye, J., Farnum, M., Yang, E., Verbeeck, R., Lobanov, V., et al.: Sparse learning and stability selection for predicting MCI to AD conversion using baseline ADNI data. BMC Neurol. 12, 46 (2012). https://doi.org/10.1186/1471-2377-12-46

    Article  Google Scholar 

  34. Modarress, D., Elghobashi, S., Tan, H.: Two-component LDA measurement in a two-phase turbulent jet. AIAA J. 22(5), 624–630 (1984)

    Article  Google Scholar 

  35. Quinlan, J.R.: Induction of decision trees. Mach. Learn. 1(1), 81–106 (1986)

    Article  Google Scholar 

  36. Patil, T.R., Sherekar, S.S.: Performance analysis of Naive Bayes and J48 classification algorithm for data classification. Int. J. Comput. Sci. Appl. 6(2), 256–261 (2013)

    Google Scholar 

  37. Fukunage, K., Narendra, P.M.: A branch and bound algorithm for computing k-nearest neighbors. IEEE Trans. Comput. 7, 750–753 (1975)

    Article  MATH  Google Scholar 

  38. Zhang, D. and Shen, D.: Semi-supervised multimodal classification of Alzheimer's disease. In Biomedical Imaging: From Nano to Macro, 2011 IEEE International Symposium on. IEEE (2011)

  39. Modrego, P.J., Fayed, N., Pina, M.A.: Conversion from mild cognitive impairment to probable Alzheimer’s disease predicted by brain magnetic resonance spectroscopy. Am. J. Psychiatry 162(4), 667–675 (2005)

    Article  Google Scholar 

  40. Beheshti, I. et al.: Classification of Alzheimer's disease and prediction of mild cognitive impairment-to-Alzheimer's conversion from structural magnetic resource imaging using feature ranking and a genetic algorithm. Comput. Biol. Med. 83, 109–119 (2017)

  41. Westman, E., Muehlboeck, J.S., Simmons, A.: Combining MRI and CSF measures for classification of Alzheimer’s disease and prediction of mild cognitive impairment conversion. Neuroimage 62, 229–238 (2012). https://doi.org/10.1016/j.neuroimage.2012.04.056

    Article  Google Scholar 

Download references

Acknowledgements

We wish to thank M. Garcia-Torres for providing us with his implementation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aise Zulal Sevkli.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karadayi-Ataş, P., Sevkli, A.Z. & Tufan, K. A VNS based framework for early diagnosis of the Alzheimer's disease converted from mild cognitive impairment. Optim Lett 17, 2347–2366 (2023). https://doi.org/10.1007/s11590-021-01816-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11590-021-01816-y

Keywords

Navigation