Skip to main content
Log in

A note on Anti-Nash equilibrium for bimatrix game

  • Original Paper
  • Published:
Optimization Letters Aims and scope Submit manuscript

Abstract

A new concept of equilibrium called Anti-Nash equilibrium has been introduced. The existence of Anti-Nash equlibrium was established. Based on Mills theorem (Mills in J Soc Ind Appl Math 8:397–402, 1960), we reduce finding Anti-Nash equilibrium to a quadratic programming. We illustrate the new equilibrium on an example.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abalo, K.Y., Kostreva, M.M.: Some existence theorems of Nash and Berge equilibria. Appl. Math. Lett. 17, 569–573 (2004)

    Article  MathSciNet  Google Scholar 

  2. Abalo, K., Kostreva, M.M.: Berge equilibrium: some recent results from fixed-point theorems. Appl. Math. Comput. 169, 624–638 (2005)

    MathSciNet  MATH  Google Scholar 

  3. Amiet, B., Collevecchio, A., Scarsini, M., Zhong, Z.: Pure nash equilibria and best-response dynamics in random games. Math. Oper. Res. (2021). https://doi.org/10.1287/moor.2020.1102

    Article  MathSciNet  MATH  Google Scholar 

  4. Chinchuluun, A., Pardalos, P.M., Migdalas, A., Pitsoulis, L.: Pareto Optimality, Game Theory and Equilibria, vol. 17. Springer, New York (2008)

    Book  Google Scholar 

  5. Berge, C.: Theorie Generale des Ieux n-Personnes. Gauthier Villars, Paris (1957)

    MATH  Google Scholar 

  6. Colman, A.M., Korner, T.W., Musy, O., Tazdait, T.: Mutual support in games: some properties of Berge equilibria. J. Math. Psychol. 55(2), 166–175 (2011)

    Article  MathSciNet  Google Scholar 

  7. Crettez, B.: On Sugden’s “mutually beneficial practice” and Berge equilibrium. Int. Rev. Econ. 64(4), 357–366 (2017)

  8. Daskalakis, C., Goldberg, P.W., Papadimitriou, C.H.: The complexity of computing a Nash equilibrium. SIAM J. Comput. 39(1), 195–259 (2009)

    Article  MathSciNet  Google Scholar 

  9. Saiz, M.E., Hendrix, E.M.T.: Methods for computing Nash equilibria of a location quantity game. Comput. Oper. Res. 35, 3311–3330 (2008)

    Article  Google Scholar 

  10. Enkhbat, R., Batbileg, S., Tungalag, N., Anikin, A., Gornov, A.A.: Computational method for solving N-person game. Izv. Irkutsk. Gos. Univ. Ser. Mat. (Series Mathematics) 20, 109–121 (2017)

    MathSciNet  MATH  Google Scholar 

  11. Enkhbat, R.: A note on Anti-Berge equilibrium. Izv. Irkutsk. Gos. Univ. Ser. Mat. 36, 3–13 (2021)

  12. Gilboa, I., Zemel, E.: Nash and correlated equilibria: some complexity considerations. Games Econ. Behav. 1, 80–93 (1989)

    Article  MathSciNet  Google Scholar 

  13. Harsanyi, J.C., Selten, R.: A General Theory of Equilibrium Selection in Games. MIT Press, Cambridge (1988)

    MATH  Google Scholar 

  14. Kontogiannis, S., Spirakis, P.: Well supported approximate equilibria in bimatrix games. Algorithmica 57, 653–667 (2010)

    Article  MathSciNet  Google Scholar 

  15. Kuhn, H.W.: An algorithm for equilibrium points in bimatrix games. Proc. Natl. Acad. Sci. US 47, 1657–1662 (1961)

    Article  MathSciNet  Google Scholar 

  16. Kukushkin, N.S.: Nash equilibrium in compact-continuous games with a potential. Int. J. Game Theory 40, 387–392 (2011)

    Article  MathSciNet  Google Scholar 

  17. Lemke, C., Howson, J.: Equilibrium points of bimatrix games. J. SIAM 12, 413–423 (1964)

    MathSciNet  MATH  Google Scholar 

  18. Carvalho, M., Lodi, A., Pedroso, J.P.: Existence of Nash equilibria on integer programming games. In: Congress of APDIO, the Portuguese Operational Research Society, pp. 11–23. Springer, Cham (2017)

    Google Scholar 

  19. Yannakakis, M.: Computational Aspects of Equilibria, Algorithmic Game Theory, pp. 2–13. Springer, Berlin (2009)

    Book  Google Scholar 

  20. Mills, H.: Equilibrium point in finite game. J. Soc. Indust. Appl. Math. 8(2), 397–402 (1960)

    Article  MathSciNet  Google Scholar 

  21. Salukvadze, M.E., Zhukovskiy, V.I.: The Berge equilibrium: A Game-Theoretic Framework for the Golden Rule of Ethics. Birkhauser, Cham (2020)

    Book  Google Scholar 

  22. Nash, J.: Non-cooperative games. Annals Math. 54, 289–295 (1951)

    Article  MathSciNet  Google Scholar 

  23. Nau, R., Gomez-Canovas, S., Hansen, P.: On the geometry of Nash equilibria and correlated equilibria. Int. J. Game Theory 32, 443–453 (2003)

    MathSciNet  MATH  Google Scholar 

  24. Neyman, A., Sorin, S. (eds.): Stochastic Games and Applications. Kluwer, Dordrecht (2003)

    MATH  Google Scholar 

  25. Nessah, R.: Non cooperative games. Annals Math. 54, 286–295 (1951)

    Article  MathSciNet  Google Scholar 

  26. Nessah, R., Larbani, M., Tazdait, T.: A note on Berge equilibrium. Appl. Math. Lett. 20(8), 926–932 (2007)

    Article  MathSciNet  Google Scholar 

  27. Enkhbat, Rentsen, Sukhee, Batbileg: Optimization approach to Berge equilibrium for bimatrix game. Optim. Lett. 15(2), 711–718 (2021)

    Article  MathSciNet  Google Scholar 

  28. Robinson, J.: An iterative method of solving a game. Annals Math. 54, 296–301 (1951)

    Article  MathSciNet  Google Scholar 

  29. Rosen, J.: Existence and uniqueness of equilibrium points for concave n-person games. Econometrica 33(3), 520–534 (1965)

    Article  MathSciNet  Google Scholar 

  30. Savani, R., von Stengel, B.: Hard to solve bimatrix games. Econometrica 74, 397–429 (2006)

    Article  MathSciNet  Google Scholar 

  31. Spirakis, P.: Approximate equilibria for strategic two-person games. In: Proc. 1st Symp. Alg. Game Theory, pp. 5–21, (2008)

  32. Kontogiannis, S., Spirakis, P.: On mutual concavity and strategically-zero-sum bimatrix games. Theor Comput Sci 432, 64–76 (2012)

    Article  MathSciNet  Google Scholar 

  33. Tucker,A.: A two-person dilemma, Stanford University. In: E. Rassmussen (ed.), Readings in games and information, pp. 7–8 (1950)

  34. Zhukovskiy, V.I.: Some Problems of Non-Antagonistic Differential Games, pp. 103–195. Mathematical methods in operation research, Bulgarian Academy of Sciences, Sofia (1985)

    Google Scholar 

  35. Zhukovskiy, V.I., Kudryavtsev, K.N.: Mathematical foundations of the golden rule I. static case. Autom. Remote Control 78, 1920–1940 (2017)

    Article  MathSciNet  Google Scholar 

  36. Vaisman, K.S.: Berge equilibrium, Ph.D thesis, St. Petersburg: St. Petersburg.Gos.Univ., 1995

  37. Vaisman, K.S.: Berge equilibrium. In: Zhukovskiy, V.I., Chikrii, A.A. (eds.) Linear quadratic differential games, pp. 119–143. Naukova Dumka, Kiev (1994)

Download references

Author information

Authors and Affiliations

Authors

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rentsen, E. A note on Anti-Nash equilibrium for bimatrix game. Optim Lett 16, 1927–1933 (2022). https://doi.org/10.1007/s11590-021-01813-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11590-021-01813-1

Keywords

Navigation