Skip to main content
Log in

Primal-dual incremental gradient method for nonsmooth and convex optimization problems

  • Original Paper
  • Published:
Optimization Letters Aims and scope Submit manuscript

Abstract

In this paper, we consider a nonsmooth convex finite-sum problem with a conic constraint. To overcome the challenge of projecting onto the constraint set and computing the full (sub)gradient, we introduce a primal-dual incremental gradient scheme where only a component function and two constraints are used to update each primal-dual sub-iteration in a cyclic order. We demonstrate an asymptotic sublinear rate of convergence in terms of suboptimality and infeasibility which is an improvement over the state-of-the-art incremental gradient schemes in this setting. Numerical results suggest that the proposed scheme compares well with competitive methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Amini, M., Yousefian, F.: An iterative regularized incremental projected subgradient method for a class of bilevel optimization problems. In: 2019 American Control Conference (ACC), pp. 4069–4074. IEEE (2019)

  2. Bauschke, H.H.: Projection algorithms and monotone operators. Ph.D. thesis, Theses (Dept. of Mathematics and Statistics)/Simon Fraser University (1996)

  3. Ben-Tal, A., Nemirovski, A.: Lectures on Modern Convex Optimization: Analysis, Algorithms, and Engineering Applications. SIAM (2001)

  4. Bertsekas, D., Nedic, A., Ozdaglar, A.: Convex Analysis and Optimization. Athena Scientific, Athena Scientific Optimization and Computation Series (2003)

    MATH  Google Scholar 

  5. Blatt, D., Hero, A.O., Gauchman, H.: A convergent incremental gradient method with a constant step size. SIAM J. Optim. 18(1), 29–51 (2007)

    Article  MathSciNet  Google Scholar 

  6. Chambolle, A., Ehrhardt, M.J., Richtárik, P., Schonlieb, C.B.: Stochastic primal-dual hybrid gradient algorithm with arbitrary sampling and imaging applications. SIAM J. Optim. 28(4), 2783–2808 (2018)

    Article  MathSciNet  Google Scholar 

  7. Chen, S., Donoho, D.: Basis pursuit. In: Proceedings of 1994 28th Asilomar Conference on Signals, Systems and Computers, vol. 1, pp. 41–44. IEEE (1994)

  8. Defazio, A., Bach, F., Lacoste-Julien, S.: Saga: A fast incremental gradient method with support for non-strongly convex composite objectives. In: Advances in neural information processing systems, pp. 1646–1654 (2014)

  9. Donoho, D.L.: Compressed sensing. IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006)

    Article  MathSciNet  Google Scholar 

  10. Gaines, B.R., Kim, J., Zhou, H.: Algorithms for fitting the constrained lasso. J. Comput. Graph. Stat. 27(4), 861–871 (2018)

    Article  MathSciNet  Google Scholar 

  11. Gurbuzbalaban, M., Ozdaglar, A., Parrilo, P.A.: On the convergence rate of incremental aggregated gradient algorithms. SIAM J. Optim. 27(2), 1035–1048 (2017)

    Article  MathSciNet  Google Scholar 

  12. Hamedani, E.Y., Aybat, N.S.: A primal-dual algorithm for general convex-concave saddle point problems. arXiv preprint arXiv:1803.01401 (2018)

  13. Jalilzadeh, A., Yazdandoost Hamedani, E., Aybat, N.S., Shanbhag, U.V.: A doubly-randomized block-coordinate primal-dual method for large-scale saddle point problems. arXiv pp. arXiv–1907 (2019)

  14. Kaushik, H.D., Yousefian, F.: A projection-free incremental gradient method for large-scale constrained optimization. arXiv preprint arXiv:2006.07956 (2020)

  15. Le Roux, N., Schmidt, M., Bach, F.: A stochastic gradient method with an exponential convergence rate for finite training sets. Pereira et al (2013)

  16. Nedic, A., Bertsekas, D.P.: Incremental subgradient methods for nondifferentiable optimization. SIAM J. Optim. 12(1), 109–138 (2001)

    Article  MathSciNet  Google Scholar 

  17. Xu, Y.: First-order methods for constrained convex programming based on linearized augmented lagrangian function. arXiv preprint arXiv:1711.08020 (2017)

  18. Xu, Y.: Primal-dual stochastic gradient method for convex programs with many functional constraints. SIAM J. Optim. 30(2), 1664–1692 (2020)

    Article  MathSciNet  Google Scholar 

  19. Yousefian, F., Nedić, A., Shanbhag, U.V.: On smoothing, regularization, and averaging in stochastic approximation methods for stochastic variational inequality problems. Math. Program. 165(1), 391–431 (2017)

    Article  MathSciNet  Google Scholar 

  20. Yu, A.W., Lin, Q., Yang, T.: Doubly stochastic primal-dual coordinate method for regularized empirical risk minimization with factorized data. CoRR, abs/1508.03390 (2015)

  21. Zhang, Y., Xiao, L.: Stochastic primal-dual coordinate method for regularized empirical risk minimization. J. Mach. Learn. Res. 18(1), 2939–2980 (2017)

    MathSciNet  MATH  Google Scholar 

  22. Zhu, Z., Storkey, A.J.: Adaptive stochastic primal-dual coordinate descent for separable saddle point problems. In: Joint European Conference on Machine Learning and Knowledge Discovery in Databases, pp. 645–658. Springer (2015)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Afrooz Jalilzadeh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jalilzadeh, A. Primal-dual incremental gradient method for nonsmooth and convex optimization problems. Optim Lett 15, 2541–2554 (2021). https://doi.org/10.1007/s11590-021-01752-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11590-021-01752-x

Keywords

Navigation