Skip to main content

Maximum shortest path interdiction problem by upgrading edges on trees under hamming distance

Abstract

We consider the maximum shortest path interdiction problem by upgrading edges on trees under Hamming distance (denoted by (MSPITH)), which has wide applications in transportation network, network war and terrorist network. The problem (MSPITH) aims to maximize the length of the shortest path from the root of a tree to all its leaves by upgrading edge weights such that the upgrade cost under sum-Hamming distance is upper-bounded by a given value. We show that the problem (MSPITH) under weighted sum-Hamming distance is NP-hard. We consider two cases of the problem (MSPITH) under unit sum-Hamming distance based on the number K of critical edges. We propose a greedy algorithm within \(O(n+l\log l)\) time when \(K=1\) and a dynamic programming algorithm within \(O(n(\log n+K^3))\) time when \(K>1\), where n and l are the numbers of nodes and leaves in a tree, respectively. Furthermore, we consider a minimum cost shortest path interdiction problem by upgrading edges on trees under unit Hamming distance, denoted by (MCSPITUH) and propose a binary search algorithm within \(O(n^4\log n)\) time, where a dynamic programming algorithm is executed in each iteration to solve its corresponding problem (MSPITH). Finally, we design numerical experiments to show the effectiveness of the algorithms.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows. Prentice-Hall, Englewood Cliffs, NJ (1993)

    MATH  Google Scholar 

  2. 2.

    Albert, R., Jeong, H., Barabasi, A.: Error and attack tolerance of complex networks. Nature 406(6794), 378–382 (2000)

    Article  Google Scholar 

  3. 3.

    Khachiyan, L., Boros, E., Borys, K., Elbassioni, K., Gurvich, V., Rudolf, G., Zhao, J.: On short paths interdiction problems: total and node-wise limited interdiction. Theory Comput. Syst. 43(2), 204–233 (2008)

    MathSciNet  Article  Google Scholar 

  4. 4.

    Corley, H.W., Sha, D.Y.: Most vital links and nodes in weighted networks. Oper. Res. Lett. 1, 157–161 (1982)

    MathSciNet  Article  Google Scholar 

  5. 5.

    Bar-Noy, A., Khuller, S., Schieber, B.: The complexity of finding most vital arcs¡¡ and nodes, Technical Report CS-TR-3539. University of Maryland, Department of Computer Science (1995)

  6. 6.

    Nardelli, E., Proietti, G., Widmyer, P.: A faster computation of the most vital edge of a shortest path between two nodes. Inf. Process. Lett. 79(2), 81–85 (2001)

    Article  Google Scholar 

  7. 7.

    Frederickson, G.N., Solis-Oba, R.: Increasing the weight of minimum spanning trees. In: Proceedings of the 7th ACM–SIAM Symposium on Discrete Algorithms (SODA 1996), 539–546, (1996)

  8. 8.

    Bazgan, C., Toubaline, S., Vanderpooten, D.: Efficient determination of the $k$ most vital edges for the minimum spanning tree problem. Comput. Oper. Res. 39(11), 2888–2898 (2012)

    MathSciNet  Article  Google Scholar 

  9. 9.

    Pettie, S.: Sensitivity analysis of minimum spanning tree in sub-inverse- Ackermann time. In: Proceedings of 16th international symposium on algorithms and computation (ISAAC 2005), Lecture notes in computer science, 3827, 964–73, (2005)

  10. 10.

    Iwano, K., Katoh, N.: Efficient algorithms for finding the most vital edge of a minimum spanning tree. Inf. Process. Lett. 48(5), 211–213 (1993)

    MathSciNet  Article  Google Scholar 

  11. 11.

    Liang, W.: Finding the $k$ most vital edges with respect to minimum spanning trees for fixed $k$. Dis. Appl. Math. 113(2–3), 319–327 (2001)

    MathSciNet  Article  Google Scholar 

  12. 12.

    Zenklusen, R., Ries, B., Picouleau, C., Werra, D., Bentz, C., de Costa, M.: Blockers and transversals. Dis. Math. 309(13), 4306–4314 (2009)

    MathSciNet  Article  Google Scholar 

  13. 13.

    Zenklusen, R.: Matching interdiction. Dis. Appl. Math. 158(15), 1676–1690 (2010)

    MathSciNet  Article  Google Scholar 

  14. 14.

    Bazgan, C., Toubaline, S., Vanderpooten, D.: Critical edges for the assignment problem: complexity and exact resolution. Oper. Res. Lett. 41, 685–689 (2013)

    MathSciNet  Article  Google Scholar 

  15. 15.

    Ries, B., Bentz, C., Picouleau, C., Werra, D., Zenklusen, R., de Costa, M.: Blockers and transversals in some subclasses of bipartite graphs: when caterpillars are dancing on a grid. Dis. Math. 310(1), 132–146 (2010)

    MathSciNet  Article  Google Scholar 

  16. 16.

    Zenklusen, R.: Network flow interdiction on planar graphs. Dis. Appl. Math. 158(13), 1441–1455 (2010)

    MathSciNet  Article  Google Scholar 

  17. 17.

    Altner, D.S., Ergun, Z., Uhan, N.A.: The maximum flow network interdiction problem: valid inequalities, integrality gaps and approximability. Oper. Res. Lett. 38, 33–38 (2010)

    MathSciNet  Article  Google Scholar 

  18. 18.

    Bazgan, C., Toubaline, S., Vanderpooten, D.: Complexity of determining the most vital elements for the p-median and p-center location problems. J. Combin. Optim. 25(2), 191–207 (2013)

    MathSciNet  Article  Google Scholar 

  19. 19.

    Bazgan, C., Nichterlein, A., et al.: A refined complexity analysis of finding the most vital edges for undirected shortest paths: algorithms and complexity. Lecture Notes Comput. Sci. 9079, 47–60 (2015)

    Article  Google Scholar 

  20. 20.

    Zhang, H.L., Xu, Y.F., Wen, X.G.: Optimal shortest path set problem in undirected graphs. J. Combin. Optim. 29(3), 511–530 (2015)

    MathSciNet  Article  Google Scholar 

  21. 21.

    Ertugrl, A., Gokhan, O., Cevriye, T.G.: Determining the most vital arcs on the shortest path for fire trucks in terrorist actions that will cause fire. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 68(1), 441–450 (2019)

    MathSciNet  Google Scholar 

  22. 22.

    Zhang, Q., Guan, X.C., Pardalos, P.M.: Maximum shortest path interdiction problem by upgrading edges on trees under weighted $l_1$ norm. J. Global Optim. (2020). https://doi.org/10.1007/s10898-020-00958-0

    Article  MATH  Google Scholar 

  23. 23.

    Mohammadi, A., Tayyebi, J.: Maximum capacity path interdiction problem with fixed costs. Asia Pacific J. Oper. Res. 36(4), 1950018 (2019)

    MathSciNet  Article  Google Scholar 

  24. 24.

    Zhang, B.W., Guan, X.C., Pardalos, P.M., et al.: An algorithm for solving the shortest path improvement problem on rooted trees under unit hamming distance. J. Optim. Theory Appl. 178, 538–559 (2018)

    MathSciNet  Article  Google Scholar 

  25. 25.

    Papadimitriou, C.H., Steiglitz, K.: Combinatorial optimization: algorithms and complexity, Dover Publications, the second edition, (1988)

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Xiucui Guan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Research is supported by National Natural Science Foundation of China (11471073) and the Basic Research Program at the National Research University Higher School of Economics (HSE) for P. M. Pardalos.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, Q., Guan, X., Wang, H. et al. Maximum shortest path interdiction problem by upgrading edges on trees under hamming distance. Optim Lett 15, 2661–2680 (2021). https://doi.org/10.1007/s11590-020-01687-9

Download citation

Keywords

  • Network interdiction problem
  • Upgrading critical edges
  • Shortest path
  • Tree
  • Hamming distance
  • Dynamic programming algorithm