Skip to main content
Log in

Two-Bar Charts Packing Problem

  • Original Paper
  • Published:
Optimization Letters Aims and scope Submit manuscript

Abstract

We consider a Bar Charts Packing Problem (BCPP), in which it is necessary to pack bar charts (BCs) in a strip of minimum length. The problem is, on the one hand, a generalization of the bin packing problem (BPP) and, on the other hand, a particular case of the project scheduling problem with multidisciplinary jobs and one limited non-accumulative resource. Earlier, we proposed a polynomial algorithm that constructs the optimal packing for a given order of non-increasing BCs. This result generalizes a similar result for BPP. We focus on the Two-Bar Charts Packing Problem (2-BCPP), where each BC consists of two bars. For this case, we show that the proposed algorithm A constructs a packing in polynomial time with a length of \(2OPT+1\), where OPT is the minimum possible packing length. As far as we know, this is the first non-trivial guaranteed estimate for 2-BCPP. We also conducted a numerical experiment to compare the solutions built by our approximate algorithms with the optimal solutions constructed by the CPLEX package. The experimental results confirmed the high efficiency of the developed algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

A :

Approximation algorithm with guaranteed estimate

A1:

Algorithm A without the first stage

A_LO:

Algorithm A with lexicographic preordering of BCs

A1_LO:

Algorithm A1 with lexicographic preordering of BCs

BC:

Bar chart

2-BC:

Bar chart consisting of two bars

BCPP:

Bar Charts Packing Problem

2-BCPP:

Two Bar Charts Packing Problem

BF:

Algorithm Best Fit for bin packing

BLP:

Boolean Linear Programming

BPP:

Bin packing problem

2-DVPP:

Two-dimensional vector packing problem

CPLEX:

IBM ILOG CPLEX Optimization Studio

CPLEX1:

CPLEX with warm start

FF:

Algorithm First Fit for bin packing

FFD:

Algorithm First Fit Decreasing for bin packing

G :

Order-preserving greedy algorithm

GA :

Greedy algorithm

GA_LO:

Algorithm GA with lexicographic preordering of BCs

OPT :

Minimum packing length (the optimal value of the objective function)

SPP:

Strip packing problem

References

  1. Baker, B.S., Coffman Jr., E.G., Rivest, R.L.: Orthogonal packing in two dimensions. SIAM J. Comput. 9(4), 846–855 (1980)

    Article  MathSciNet  Google Scholar 

  2. Baker, B.S.: A new proof for the first-fit decreasing bin-packing algorithm. J. Algorithms 6, 49–70 (1985)

    Article  MathSciNet  Google Scholar 

  3. Bansal, N., Eliás, M., Khan, A.: Improved approximation for vector bin packing. In: SODA, pp. 1561–1579 (2016)

  4. Christensen, H.I., Khanb, A., Pokutta, S., Tetali, P.: Approximation and online algorithms for multidimensional bin packing: a survey. Comput. Sci. Rev. 24, 63–79 (2017)

    Article  MathSciNet  Google Scholar 

  5. Coffman Jr., E.G., Garey, M.R., Johnson, D.S., Tarjan, R.E.: Performance bounds for level-oriented two-dimensional packing algorithms. SIAM J. Comput. 9(4), 808–826 (1980)

    Article  MathSciNet  Google Scholar 

  6. Côté, J.-F., Dell’Amico, M., Iori, M.: Combinatorial Benders’ cuts for the strip packing problem. Oper. Res. 62(3), 643–661 (2014)

    Article  MathSciNet  Google Scholar 

  7. Dósa, G.: The tight bound of first fit decreasing bin-packing algorithm is \(FFD(I)\le 11/9\ OPT(I)+6/9\). Lecture Notes Comput. Sci. 4614, 1–11 (2007)

    Article  Google Scholar 

  8. Erzin, A., et al.: Optimal investment in the development of oil and gas field. In: Kochetov Y., Bykadorov I., Gruzdeva T. (eds.) Mathematical Optimization Theory and Operations Research. MOTOR 2020. CCIS. vol. 1275, pp. 336–349. Springer, Cham. (2020)

  9. Gimadi E., Sevastianov S.: On solvability of the project scheduling problem with accumulative resources of an arbitrary sign. In: Selected Papers in Operations Research Proceedings 2002, pp. 241–246. Springer, Berlin (2003)

  10. Gimadi, E.K., Goncharov, E.N., Mishin, D.V.: On some realizations of solving the resource constrained project scheduling problems. Yugoslav J. Oper. Res. 29(1), 31–42 (2019)

    Article  MathSciNet  Google Scholar 

  11. Goncharov, E.: A greedy heuristic approach for the resource-constrained project scheduling problem. Stud. Inf. Univ. 9(3), 79–90 (2011)

    Google Scholar 

  12. Goncharov, E.: A stochastic greedy algorithm for the resource-constrained project scheduling problem. Discrete Anal. Oper. Res. 21(3), 11–24 (2014)

    MathSciNet  MATH  Google Scholar 

  13. Goncharov, E.N., Leonov, V.V.: Genetic algorithm for the resource-constrained project scheduling problem. Autom. Remote Control 78(6), 1101–1114 (2017)

    Article  MathSciNet  Google Scholar 

  14. Goncharov, E.N.: Variable neighborhood search for the resource constrained project scheduling problem. In: Bykadorov et al. (eds.) MOTOR 2019. CCIS, vol. 1090, pp. 39–50 (2019)

  15. Harren, R., van Stee, R.: Improved absolute approximation ratios for two-dimensional packing problems. In APPROX: 12th International Workshop on Approximation Algorithms for Combinatorial Optimization Problems, pp. 177–189 (2009)

  16. Harren, R., Jansen, K., Pradel, L., van Stee, R.: A (5/3 + epsilon)-approximation for strip packing. Comput. Geom. 47(2), 248–267 (2014)

    Article  MathSciNet  Google Scholar 

  17. Hartmann, S.: A self-adapting genetic algorithm for project scheduling under resource constraints. Naval Res. Logist. 49, 433–448 (2002)

    Article  MathSciNet  Google Scholar 

  18. Johnson, D.S.: Near-optimal bin packing algorithms. Massachusetts Institute of Technology, PhD thesis (1973)

  19. Johnson, D.S., Garey, M.R.: A 71/60 theorem for bin packing. J. Complex. 1(1), 65–106 (1985)

    Article  MathSciNet  Google Scholar 

  20. Kolisch, R., Sprecher, A.: PSPLIB—a project scheduling problem library. Eur. J. Oper. Res. 96(1), 205–216 (1996)

    Article  Google Scholar 

  21. Kellerer, H., Kotov, V.: An approximation algorithm with absolute worst-case performance ratio 2 for two-dimensional vector packing. Oper. Res. Lett. 31, 35–41 (2003)

    Article  MathSciNet  Google Scholar 

  22. Kolisch, R., Hartmann, S.: Experimental investigation of heuristics for resource-constrained project scheduling: an update. Eur. J. Oper. Res. 174, 23–37 (2006)

    Article  Google Scholar 

  23. Lewis, R.: A general-purpose hill-climbing method for order independent minimum grouping problems: a case study in graph colouring and bin packing. Comput. Oper. Res. 36(7), 2295–2310 (2009)

    Article  MathSciNet  Google Scholar 

  24. Li, R., Yue, M.: The proof of \(FFD(L)\le 11/9 OPT(L)+7/9\). Chin. Sci. Bull. 42(15), 1262–1265 (1997)

    Article  Google Scholar 

  25. Mesyagutov, M.A., Mukhacheva, E.A., Belov, G.N., Scheithauer, G.: Packing of one-dimensional bins with contiguous selection of identical items: an exact method of optimal solution. Autom. Remote Control 72(1), 141–159 (2011)

    Article  MathSciNet  Google Scholar 

  26. Schiermeyer, I.: Reverse-fit: a 2-optimal algorithm for packing rectangles. In ESA: Proceedings of 2nd European Symposium on Algorithms, pp. 290–299 (1994)

  27. Sleator, D.D.: A 2.5 times optimal algorithm for packing in two dimensions. Inf. Process. Lett. 10(1), 37–40 (1980)

    Article  MathSciNet  Google Scholar 

  28. Steinberg, A.: A strip-packing algorithm with absolute performance bound 2. SIAM J. Comput. 26(2), 401–409 (1997)

    Article  MathSciNet  Google Scholar 

  29. VaziraniV, V.: Approximation Algorithms. Springer, Berlin (2001)

    Google Scholar 

  30. Wei, L., Lai, M., Limc, A., Hua, Q.: A branch-and-price algorithm for the two-dimensional vector packing problem. Eur. J. OR 281(1), 25–35 (2020)

    MathSciNet  Google Scholar 

  31. Yue, M.: A simple proof of the inequality \(FFD(L)\le 11/9 OPT(L)+1, \forall L\), for the FFD bin-packing algorithm. Acta Math. Appl. Sin. 7(4), 321–331 (1991)

    Article  Google Scholar 

  32. Yue, M., Zhang, L.: A simple proof of the inequality \(MFFD(L)\le 71/60 OPT(L)+1, \forall L\), for the MFFD bin-packing algorithm. Acta Math. Appl. Sin. 11(3), 318–330 (1995)

    Article  Google Scholar 

Download references

Acknowledgements

The work is supported by Mathematical Center in Akademgorodok under Agreement No. 075-2019-1613 with the Ministry of Science and Higher Education of the Russian Federation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adil Erzin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Erzin, A., Melidi, G., Nazarenko, S. et al. Two-Bar Charts Packing Problem. Optim Lett 15, 1955–1971 (2021). https://doi.org/10.1007/s11590-020-01657-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11590-020-01657-1

Keywords

Navigation