Skip to main content
Log in

The complexity results of the sparse optimization problems and reverse convex optimization problems

  • Original Paper
  • Published:
Optimization Letters Aims and scope Submit manuscript

Abstract

In this paper, we study complexity results of sparse optimization problems and reverse convex optimization problems. These problems are very important subjects of optimization problems. We prove that the complexity result of the sparsity constraint problem and sparse solution problem are all NP-hard in the strong sense and even testing feasibility of the sparsity constraint is NP-complete in the strong sense. Then the sparse optimization problem is NP-hard in the strong sense. We also prove that the reverse convex problem is NP-hard in the strong sense by transforming the sparsity constraint into a reverse convex constraint.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Addis, B., Carello, G., Grosso, A., Lanzarone, E., Mattia, S.: Handling uncertainty in health care management using the cardinality-constrained approach: advantages and remarks. Oper. Res. Health Care 4, 1–4 (2015)

    Article  Google Scholar 

  2. Arthanari, T.S., Dodge, Y.: Mathematical Programming in Statistics. Wiley, New York (1993)

    MATH  Google Scholar 

  3. Bansal, P.P., Jacobsen, S.E.: Characterization of local solutions for a class of nonconvex programs. J. Optim. Theory Appl. 15, 549–564 (1975)

    Article  MathSciNet  Google Scholar 

  4. Bertsimas, D., Sim, M.: The price of robustness. Oper. Res. 52, 35–53 (2004)

    Article  MathSciNet  Google Scholar 

  5. Bienstock, D.: Computational study of a family of mixed-integer quadratic programming problems. Math. Program. 74, 121–140 (1996)

    MathSciNet  MATH  Google Scholar 

  6. Bruckstein, A.M., Donoho, D.L., Elad, M.: From sparse solutions of systems of equations to sparse modeling of signals and images. SIAM Rev. 51, 34–81 (2009)

    Article  MathSciNet  Google Scholar 

  7. Bulatov, V.P.: Approximation methods for solving some mathematical programming problems. Applied Mathematics, Irkutsk. SEI SB AS SSSR, pp. 10–15 (1969) (in Russian)

  8. Candès, E., Romberg, J., Tao, T.: Robust uncertainty principles: exact signal reconstruction from highly impcomplete frequency information. IEEE Trans. Inf. Theory 52, 489–509 (2006)

    Article  Google Scholar 

  9. Candès, E., Romberg, J., Tao, T.: Stable signal recovery from incomplete and inaccurate measurements. Commun. Pure Appl. Math. 59, 1207–1223 (2006)

    Article  MathSciNet  Google Scholar 

  10. Chang, T.J., Meade, N., Beasley, J.E., Sharaiha, Y.M.: Heuristics for cardinality constrained portfolio optimisation. Comput. Oper. Res. 27, 1271–1302 (2000)

    Article  Google Scholar 

  11. Chen, X., Ge, D., Wang, Z., Ye, Y.: Complexity of unconstrained \(L_2-L_p\) minimization. Math. Program. 143, 371–383 (2014)

    Article  MathSciNet  Google Scholar 

  12. Chen, Y., Ge, D., Wang, M., Wang, Z., Ye, Y.: Strong NP-hardness for sparse optimization with concave penalty functions. In: Proceedings of the 34th International Conference on Machine Learning (2017)

  13. Fortin, D., Tsevendorj, I.: Global optimization and multi knapsack: a percolation algorithm. Eur. J. Oper. Res. 154, 46–56 (2004)

    Article  MathSciNet  Google Scholar 

  14. Gao, J.J., Li, D.: Optimal cardinality constrained portfolio selection. Oper. Res. 61, 745–761 (2013)

    Article  MathSciNet  Google Scholar 

  15. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guid to the Theorey of NP-Completeness. W.H. Freeman, San Francisco (1979)

    Google Scholar 

  16. Ge, D., Jiang, X., Ye, Y.: A note on complexity of \(\ell _p\) minimization. Math. Program. 129, 285–299 (2011)

    Article  MathSciNet  Google Scholar 

  17. Jacobsen, S.E., Moshirvaziri, K.: Computational experience using an edge search algorithm for linear reverse convex programs. J. Glob. Optim. 9, 153–167 (1996)

    Article  MathSciNet  Google Scholar 

  18. Jokar, S., Pfetsch, M.E.: Exact and approximate sparse solutions of underdetermined linear equations. SIAM J. Sci. Comput. 31, 23–44 (2008)

    Article  MathSciNet  Google Scholar 

  19. Lu, Z., Li, X.: Sparse recovery via partial regularization: models, theory and algorithms. Math. Oper. Res. 43, 1290–1316 (2018)

    Article  MathSciNet  Google Scholar 

  20. Miller, A.J.: Subset Selection in Regression, 2nd edn. Chapman and Hall, Boca Raton (2002)

    Book  Google Scholar 

  21. Moshirvaziri, K., Amouzegar, M.A.: A cutting plane algorithm for linear reverse convex programs. Ann. Oper. Res. 105, 201–212 (2001)

    Article  MathSciNet  Google Scholar 

  22. Natarajan, B.K.: Sparse approximate solutions to linear systerms. SIAM J. Comput. 24, 227–234 (1995)

    Article  MathSciNet  Google Scholar 

  23. Ruszczynsk, A.: Nonlinear Optimization. Princeton University Press, Princeton (2006)

    Book  Google Scholar 

  24. Saad, S.B., Jacobsen, S.E.: A level set algorithm for a class of reverse convex programs. Ann. Oper. Res. 25, 19–42 (1990)

    Article  MathSciNet  Google Scholar 

  25. Shaw, D.X., Liu, S., Kopman, L.: Lagrangian relaxation procedure for cardinality constrained portfolio optimization. Optim. Methods Softw. 23, 411–420 (2008)

    Article  MathSciNet  Google Scholar 

  26. Tropp, J.A., Wright, S.J.: Computational methods for sparse solution of linear inverse problems. Proc. IEEE 98, 948–958 (2010)

    Article  Google Scholar 

  27. Tuy, H.: Convex programs with an additional reverse convex constraint. J. Optim. Theory Appl. 52, 463–486 (1987)

    Article  MathSciNet  Google Scholar 

  28. Tuy, H.: Convex analysis and global optimization. Nonconvex Optim. Appl. 22, 283–283 (2016)

    MATH  Google Scholar 

  29. Wang, Y., Ying, L.: Global optimization for special reverse convex programming. Comput. Math. Appl. 55, 1154–1163 (2008)

    Article  MathSciNet  Google Scholar 

  30. Woodside, M., Lucas, C., Beasley, J.E.: Heuristic algorithms for the cardinality constrained efficient frontier. Eur. J. Oper. Res. 213, 538–550 (2011)

    Article  MathSciNet  Google Scholar 

  31. Zalesski, A.B.: Nonconvexity of feasible domains and optimization of economic decisions, ekonom i mat metody, pp. 1069–1080 (1980) (in Russian)

  32. Zhao, Y.B., Li, D.: Reweighted \(\ell _1\)-minimization for sparse solutions to underdetermined linear systems. SIAM J. Optim. 22, 1065–1088 (2012)

    Article  MathSciNet  Google Scholar 

  33. Zheng, X.J., Sun, X.L., Li, D.: Improving the performance of MIQP solvers for quadratic programs with cardinality and minimum threshold constraints: a semidefinite program approach. Inf. J. Comput. 26, 690–703 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are very grateful for the reviewers’ valuable comments to improve the quality of this paper.

Funding

This research is supported in part by National Natural Science Foundation of China under Grant 11371103, 71720107003.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongyi Jiang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, Z., Hu, Q. The complexity results of the sparse optimization problems and reverse convex optimization problems. Optim Lett 14, 2149–2160 (2020). https://doi.org/10.1007/s11590-020-01541-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11590-020-01541-y

Keywords

Navigation