Skip to main content
Log in

Economic lot sizing problem with inventory dependent demand

  • Original Paper
  • Published:
Optimization Letters Aims and scope Submit manuscript

Abstract

We consider an economic lot sizing problem where the demand in a period is a piecewise linear and concave function of the amount of the available inventory after production in that period. We show that the problem is \({{\mathcal {N}}}{{\mathcal {P}}}\)-hard even when the production capacities are time invariant, and propose a polynomial time algorithm to the case where there are no capacity restrictions on production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Alfares, H.K.: Maximum-profit inventory model with stock-dependent demand, time-dependent holding cost, and all-units quantity discounts. Math. Model. Anal. 20(6), 715–736 (2015)

    Article  MathSciNet  Google Scholar 

  2. Baker, R.C., Urban, T.L.: A deterministic inventory system with an inventory-level-dependent demand rate. J. Oper. Res. Soc. 39(9), 823 (1988)

    Article  Google Scholar 

  3. Bitran, G., Yanasse, H.: Computational complexity of the capacitated lot size problem. Manag. Sci. 18, 12–20 (1982)

    MathSciNet  MATH  Google Scholar 

  4. Chuang, C., Zhao, Y.: Demand stimulation in finished-goods inventory management: empirical evidence from general motors dealerships. Int. J. Prod. Econ. 208, 208–220 (2019)

    Article  Google Scholar 

  5. Florian, M., Klein, M.: Deterministic production planning with concave costs and capacity constraints. Manag. Sci. 18, 12–20 (1971)

    Article  MathSciNet  Google Scholar 

  6. Florian, M., Lenstra, J., Rinnooy Kan, A.: Deterministic production planning: algorithms and complexity. Manag. Sci. 26(7), 669–679 (1980)

    Article  MathSciNet  Google Scholar 

  7. Friedman, Y., Hoch, Y.: A dynamic lot-size model with inventory deterioration. INFOR 16(2), 183–188 (1978)

    MATH  Google Scholar 

  8. Gupta, R., Vrat, P.: Inventory model for stock-dependent consumption rate. OPSEARCH 23(1), 19–24 (1986)

    MathSciNet  MATH  Google Scholar 

  9. Hoesel, Cv, Wagelmans, A.: An \(O(T^{3})\) algorithm for the economic lot-sizing problem with constant capacities. Manag. Sci. 42(1), 142–150 (1996)

    Article  Google Scholar 

  10. Hoesel, Sv, Romeijn, H., Morales, D.R., Wagelmans, A.: Integrated lot-sizing in serial supply chains with production capacities. Manag. Sci. 51(11), 1706–1719 (2005)

    Article  Google Scholar 

  11. IBM: IBM ILOG CPLEX 12.9 Users Manual. IBM Corp, Armonk (2019)

  12. Koschat, M.A.: Store inventory can affect demand: empirical evidence from magazine retailing. J. Retail. 84(2), 165–179 (2008)

    Article  Google Scholar 

  13. Kunreuther, H., Schrage, L.: Joint pricing and inventory decisions for constant priced items. Manag. Sci. 19(7), 732–738 (1973)

    Article  Google Scholar 

  14. Love, S.: Bounded production and inventory model with piecewise concave costs. Manag. Sci. 20(3), 313–318 (1973)

    Article  MathSciNet  Google Scholar 

  15. Lu, L., Zhang, J., Tang, W.: Optimal dynamic pricing and replenishment policy for perishable items with inventory-leveldependent demand. Int. J. Syst. Sci. 47, 1480–1494 (2016)

    Article  Google Scholar 

  16. Önal, M., Romeijn, H.E.: Two-echelon requirements planning with pricing decisions. J. Ind. Manag. Optim. 5, 767–781 (2009)

    MathSciNet  MATH  Google Scholar 

  17. Önal, M., Romeijn, H.E.: Multi-item capacitated lot-sizing problems with setup times and pricing decisions. Naval Res. Log. 57(2), 172–187 (2010)

    Article  MathSciNet  Google Scholar 

  18. Önal, M., Romeijn, H.E., Sapra, A., van den Heuvel, W.: The economic lot-sizing problem with perishable items and consumption order preference. Eur. J. Oper. Res. 244, 881–891 (2015)

    Article  MathSciNet  Google Scholar 

  19. Önal, M., van den Heuvel, W., Liu, T.: A note on “the economic lot sizing problem with inventory bounds”. Eur. J. Oper. Res. 223, 290–294 (2012)

    Article  Google Scholar 

  20. Pando, V., García-Laguna, J., San-José, L.: Optimal policy for profit maximising in an EOQ model under non-linear holding cost and stock-dependent demand rate. Int. J. Syst. Sci. 43(11), 2160–2171 (2012)

    Article  MathSciNet  Google Scholar 

  21. Sargut, F.Z., Işık, G.: Dynamic economic lot size model with perishable inventory and capacity constraints. Appl. Math. Model. 48, 806–820 (2017)

    Article  MathSciNet  Google Scholar 

  22. Urban, T.L.: Inventory models with the demand rate dependent on stock and shortage levels. Int. J. Prod. Econ. 40(1), 21–28 (1995)

    Article  Google Scholar 

  23. van den Heuvel, W., Wagelmans, A.: An efficient dynamic programming algorithm for a special case of the capacitated lot-sizing problem. COR 33(12), 3583–3599 (2006)

    MathSciNet  MATH  Google Scholar 

  24. Wagner, H., Whitin, T.: Dynamic version of the economic lot size model. Manag. Sci. 5, 89–96 (1958)

    Article  MathSciNet  Google Scholar 

  25. Winston, W.: Operations Research: Applications and Algorithms. DP Belmont, California (1994)

    MATH  Google Scholar 

  26. Zangwill, W.: A backlogging model and a multi-echelon model of a dynamic economic lot size production system—a network approach. Manag Sci 15(9), 506–527 (1969)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The work of this author was supported by the Scientific and National Research Council of Turkey (TÜBİTAK) under Grant No. 119M278.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehmet Önal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A. Data generation

Appendix A. Data generation

For each data instance, slope of the first segment is drawn randomly from UNIF(0.6,0.9). Once a segment slope is realized, the slope of the next segment is obtained by subtracting a random number drawn from UNIF(0.03,0.04). Low \(u_t^b\) values are drawn from UNIF(1,10) while high \(u_t^b\) values are generated by drawing from UNIF(10,20). Then, all the segment lengths are generated by drawing from UNIF(1,20).

For each data instance, prices are generated by drawing from UNIF(0,3); unit holding costs from UNIF(0,1); and unit production costs from UNIF(0,1). Low, medium, and high set up costs are generated by drawing from UNIF(250,300), UNIF(350,400), and UNIF(450,500), respectively.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Önal, M., Albey, E. Economic lot sizing problem with inventory dependent demand. Optim Lett 14, 2087–2106 (2020). https://doi.org/10.1007/s11590-020-01532-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11590-020-01532-z

Keywords

Navigation