Vulnerability analysis of interdependent network via integer programming approaches

Abstract

The interdependent network can be applied to model two or more infrastructure systems with mutual reliance. The failure of elements in one system may lead to failure of dependent elements in other systems, and this may happen recursively leading to a cascade of failures. In this paper, integer programming models are proposed to identify the most vulnerable network elements (nodes and edges), whose removal can maximally destroy the interdependent network, with minimum functional components survived after the cascading failure process. Numerical experiments are performed on several interdependent networks consisting of power grid and control communication network, to validate the proposed models and to identify the vulnerable network elements.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    Sforna, M., Delfanti, M.: Overview of the events and causes of the 2003 Italian blackout. Power Syst. Conf. Expos. 2006, 301–308 (2007)

    Google Scholar 

  2. 2.

    Buldyrev, S., Parshani, R., Paul, G., Stanley, H., Havlin, S.: Catastrophic cascade of failures in interdependent networks. Nature 464, 1025–1028 (2010)

    Article  Google Scholar 

  3. 3.

    Stokes-Draut, J., Taptich, M., Kavvada, O., Horvath, A.: Evaluating the electricity intensity of evolving water supply mixes: the case of California’s water network. Environ. Res. Lett. 12, 114005 (2017)

    Article  Google Scholar 

  4. 4.

    Zhang, Y., Yang, N., Lall, U.: Modeling and simulation of the vulnerability of interdependent power-water infrastructure networks to cascading failures. J. Syst. Sci. Syst. Eng. 25(1), 102–118 (2016)

    Article  Google Scholar 

  5. 5.

    Parshani, R., Rozenblat, C., Ietri, D., Ducruet, C., Havlin, S.: Inter-similarity between coupled networks. Europhys. Lett. 92, 68002–68006 (2010)

    Article  Google Scholar 

  6. 6.

    U.S. Department of Transportation: An objectives- and performance-based approach for improving the design, operations, and maintenance of traffic signal systems. Traffic Signal Management Plans (2015)

  7. 7.

    Yang, Y., Motter, A.: Cascading failures as continuous phase–space transitions. Phys. Rev. Lett. 119, 248302 (2017)

    Article  Google Scholar 

  8. 8.

    Duenas-Osorio, L., Vemuru, S.: Cascading failures in complex infrastructure systems. Struct. Saf. 31(2), 157–167 (2009)

    Article  Google Scholar 

  9. 9.

    Wang, Z., Scaglione, A., Thomas, R.: Electrical centrality measures for electric power grid vulnerability analysis. In: The 49th IEEE Conference on Decision and Control, pp. 5792–5797 (2010)

  10. 10.

    Jenelius, E., Petersen, T., Mattsson, L.: Importance and exposure in road network vulnerability analysis. Transp. Res. A Policy Pract. 40(7), 537–560 (2005)

    Article  Google Scholar 

  11. 11.

    Abedin, M., Nessa, S., Al-Shaer, E., Khan, L.: Vulnerability analysis for evaluating quality of protection of security policies. In: The 2nd ACM Workshop on Quality of Protection, pp. 49–52 (2006)

  12. 12.

    Wang, S., Hong, L., Ouyang, M., Zhang, J., Chen, X.: Vulnerability analysis of interdependent infrastructure systems under edge attack strategies. Saf. Sci. 51(1), 328–337 (2013)

    Article  Google Scholar 

  13. 13.

    Sen, A., Mazumder, A., Banerjee, J., Das, A., Compton, R.: Identification of k most vulnerable nodes in multi-layered using a new model of interdependency. In: IEEE Conference on Computer Communications Workshops, pp. 831–836 (2014)

  14. 14.

    Nguyen, D., Shen, Y., Thai, M.: Detecting critical nodes in interdependent power networks for vulnerability assessment. IEEE Trans. Smart Grid 4(1), 151–158 (2013)

    Article  Google Scholar 

  15. 15.

    Li, Y., Ma, D., Zhang, H., Sun, Q.: Critical node identification of power systems based on controllability of complex networks. Appl. Sci. 5(3), 622–636 (2015)

    Article  Google Scholar 

  16. 16.

    Veremyev, A., Boginski, V., Pasiliao, E.: Exact identification of critical nodes in sparse networks via new compact formulations. Optim. Lett. 8(4), 1245–1259 (2014)

    MathSciNet  MATH  Article  Google Scholar 

  17. 17.

    Veremyev, A., Sorokin, A., Boginski, V., Pasiliao, E.L.: Minimum vertex cover problem for coupled interdependent networks with cascading failures. Eur. J. Oper. Res. 232(3), 499–511 (2014)

    MathSciNet  MATH  Article  Google Scholar 

  18. 18.

    Nguyen, H., Sharkey, T.: A computational approach to determine damage in infrastructure networks from outage reports. Optim. Lett. 11(4), 753–770 (2017)

    MathSciNet  MATH  Article  Google Scholar 

  19. 19.

    Zhang, J., Modiano, E.: Connectivity in interdependent networks. arXiv:1709.03034 (2017)

  20. 20.

    Yu, Z., Huang, S., Ma, Z., Chen, G.: Identification of critical lines in power grid based on electric betweenness entropy. In: The 2015 IEEE PES Asia-Pacific Power and Energy Engineering Conference (2016)

  21. 21.

    Sun, X., Zhang, T., Zhang, B.: Identification of critical lines in power grid based on active power flow betweenness. In: The 5th International Conference on Electric Utility Deregulation and Restructuring and Power Technologies, pp. 1283–1287 (2016)

  22. 22.

    Liu, M., Zhao, L., Huang, L., Zhang, X., Deng, C., Long, Z.: Identification of critical lines in power system based on optimal load shedding. Energy Power Eng. 9, 261–269 (2017)

    Article  Google Scholar 

  23. 23.

    Qiang, Q., Nagurney, A.: A unified network performance measure with importance identification and the ranking of network components. Optim. Lett. 2(1), 127–142 (2008)

    MathSciNet  MATH  Article  Google Scholar 

  24. 24.

    Gao, J., Buldyrev, S.V., Stanley, H., Havlin, S.: Networks formed from interdependent networks. Nat. Phys. 8, 40–48 (2012)

    Article  Google Scholar 

  25. 25.

    Parandehgheibi, M., Modiano, E., Hay, D.: Mitigating cascading failures in interdependent power grids and communication networks. In: 2014 IEEE International Conference on Smart Grid Communications, pp. 242–247 (2014)

  26. 26.

    Parandehgheibi, M., Modiano, E.: Robustness of interdependent networks: the case of communication networks and the power grid. In: IEEE Global Communications Conference, pp. 2164–2169 (2013)

  27. 27.

    Buldyrev, S., Shere, N., Cwilich, G.: Interdependent networks with identical degree of mutually dependent nodes. Phys. Rev. Lett. 83, 016112 (2011)

    MathSciNet  Google Scholar 

  28. 28.

    Bianconi, G., Dorogovtsev, S., Mendes, J.: Mutually connected component of networks of networks with replica nodes. Phys. Rev. Lett. 91, 012804 (2015)

    Google Scholar 

  29. 29.

    Hwang, S., Choi, S., Lee, D., Kahng, B.: Efficient algorithm to compute mutually connected components in interdependent networks. Phys. Rev. Lett. 91, 022814 (2015)

    Google Scholar 

  30. 30.

    Fan, N., Watson, J.: On integer programming models for the multi-channel PMU placement problem and their solution. Energy Syst. 6(1), 1–19 (2015)

    Article  Google Scholar 

  31. 31.

    Huang, Z., Zheng, Q.P., Pasiliao, E.L., Simmons, D.: Exact algorithms on reliable routing problems under uncertain topology using aggregation techniques for exponentially many scenarios. Ann. Oper. Res. 249(1), 141–162 (2017)

    MathSciNet  MATH  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Neng Fan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hou, S., Garrido, A. & Fan, N. Vulnerability analysis of interdependent network via integer programming approaches. Optim Lett 14, 1921–1942 (2020). https://doi.org/10.1007/s11590-019-01504-y

Download citation

Keywords

  • Interdependent network
  • Vulnerability analysis
  • Cascading failure
  • Connected component