Skip to main content
Log in

Phaseless compressive sensing using partial support information

  • Short Communication
  • Published:
Optimization Letters Aims and scope Submit manuscript

Abstract

We study the recovery conditions of weighted \(\ell _1\) minimization for real-valued signal reconstruction from phaseless compressive sensing measurements when partial support information is available. A strong restricted isometry property condition is provided to ensure the stable recovery. Moreover, we present the weighted null space property as the sufficient and necessary condition for the success of k-sparse phaseless recovery via weighted \(\ell _1\) minimization. Numerical experiments are conducted to illustrate our results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. Cai, T.T., Zhang, A.: Sparse representation of a polytope and recovery of sparse signals and low-rank matrices. IEEE Trans. Inf. Theory 60(1), 122–132 (2014)

    Article  MathSciNet  Google Scholar 

  2. Candes, E.J., Eldar, Y.C., Strohmer, T., Voroninski, V.: Phase retrieval via matrix completion. SIAM Rev. 57(2), 225–251 (2015)

    Article  MathSciNet  Google Scholar 

  3. Candes, E.J., Li, X., Soltanolkotabi, M.: Phase retrieval via Wirtinger flow: theory and algorithms. IEEE Trans. Inf. Theory 61(4), 1985–2007 (2015)

    Article  MathSciNet  Google Scholar 

  4. Candes, E.J., Strohmer, T., Voroninski, V.: Phaselift: exact and stable signal recovery from magnitude measurements via convex programming. Commun. Pure Appl. Math. 66(8), 1241–1274 (2013)

    Article  MathSciNet  Google Scholar 

  5. Candes, E.J., Tao, T.: Decoding by linear programming. IEEE Trans. Inf. Theory 51(12), 4203–4215 (2005)

    Article  MathSciNet  Google Scholar 

  6. Chen, W., Li, Y.: Recovery of signals under the high order RIP condition via prior support information. Signal Process. 153, 83–94 (2018)

    Article  Google Scholar 

  7. Chen, Y., Candes, E.: Solving random quadratic systems of equations is nearly as easy as solving linear systems. In: Advances in Neural Information Processing Systems, pp. 739–747. (2015)

  8. Eldar, Y.C., Kutyniok, G.: Compressed Sensing: Theory and Applications. Cambridge University Press, Cambridge (2012)

    Book  Google Scholar 

  9. Foucart, S., Rauhut, H.: A Mathematical Introduction to Compressive Sensing. Springer, New York (2013)

    Book  Google Scholar 

  10. Friedlander, M.P., Mansour, H., Saab, R., Yilmaz, O.: Recovering compressively sampled signals using partial support information. IEEE Trans. Inf. Theory 58(2), 1122–1134 (2012)

    Article  MathSciNet  Google Scholar 

  11. Gao, B., Wang, Y., Xu, Z.: Stable signal recovery from phaseless measurements. J. Fourier Anal. Appl. 22(4), 787–808 (2016)

    Article  MathSciNet  Google Scholar 

  12. Gao, B., Xu, Z.: Phaseless recovery using the Gauss–Newton method. IEEE Trans. Signal Process. 65(22), 5885–5896 (2017)

    Article  MathSciNet  Google Scholar 

  13. Ge, H., Chen, W.: Recovery of signals by a weighted \(\ell _2/\ell _1\) minimization under arbitrary prior support information. Signal Process. 148, 288–302 (2018)

    Article  Google Scholar 

  14. Mansour, H., Saab, R.: Recovery analysis for weighted \(\ell _1\)-minimization using the null space property. Appl. Comput. Harmonic Anal. 43(1), 23–38 (2017)

    Article  MathSciNet  Google Scholar 

  15. Needell, D., Saab, R., Woolf, T.: Weighted \(\ell _{1}\)-minimization for sparse recovery under arbitrary prior information. Inf. Inference A J. IMA 6(3), 284–309 (2017)

    MathSciNet  MATH  Google Scholar 

  16. Netrapalli, P., Jain, P., Sanghavi, S.: Phase retrieval using alternating minimization. IEEE Trans. Signal Process. 18(63), 4814–4826 (2015)

    Article  MathSciNet  Google Scholar 

  17. Ohlsson, H., Yang, A.Y., Dong, R., Sastry, S.S.: Compressive phase retrieval from squared output measurements via semidefinite programming. arXiv preprint arXiv:1111.6323 (2011)

  18. Shechtman, Y., Beck, A., Eldar, Y.C.: GESPAR: efficient phase retrieval of sparse signals. IEEE Trans. Signal Process. 62(4), 928–938 (2014)

    Article  MathSciNet  Google Scholar 

  19. Voroninski, V., Xu, Z.: A strong restricted isometry property, with an application to phaseless compressed sensing. Appl. Comput. Harmonic Anal. 40(2), 386–395 (2016)

    Article  MathSciNet  Google Scholar 

  20. Wang, Y., Xu, Z.: Phase retrieval for sparse signals. Appl. Comput. Harmonic Anal. 37(3), 531–544 (2014)

    Article  MathSciNet  Google Scholar 

  21. Zhou, S., Xiu, N., Wang, Y., Kong, L.: Exact recovery for sparse signal via weighted \(\ell _1\) minimization. arXiv preprint arXiv:1312.2358 (2013)

  22. Zhou, Z., Yu, J.: Recovery analysis for weighted mixed \(\ell _2/\ell _p\) minimization with \(0<p\le 1\). J. Comput. Appl. Math. (2018). https://doi.org/10.1016/j.cam.2018.11.031

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the Swedish Research Council Grant (Reg.No. 340-2013-5342).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiyong Zhou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Z., Yu, J. Phaseless compressive sensing using partial support information. Optim Lett 14, 1961–1973 (2020). https://doi.org/10.1007/s11590-019-01487-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11590-019-01487-w

Keywords

Navigation