A mathematical programming formulation for the Hartree–Fock problem on open-shell systems

Abstract

The solutions of the time-independent Schrödinger equation provide a quantum description of the stationary state of electrons in atoms and molecules. The Hartree–Fock problem consists in expressing these solutions by means of finite dimensional approximations thereof. These are themselves linear combinations of an existing linearly independent set; best approximations are obtained when a certain energy function is minimized. In Lavor et al. (Europhys Lett 5(77):50006p1–50006p5, 2007) we proposed a new mathematical programming (MP) approach which enhanced the likelihood of attaining globally optimal approximations, limited to closed-shell atomic systems. In this paper, we discuss an extension to open-shell systems: this is nontrivial as it requires the expression of a rank constraint within an MP formulation. We achieve this by explicitly modelling eigenvalues and requiring them to be nonzero. Although our approach might not necessarily scale well, we show it works on two open-shell systems (lithium and boron).

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Belotti, P., Lee, J., Liberti, L., Margot, F., Wächter, A.: Branching and bounds tightening techniques for non-convex MINLP. Optim. Methods Softw. 24(4), 597–634 (2009)

    MathSciNet  Article  MATH  Google Scholar 

  2. 2.

    Blumenthal, L.: Theory and Applications of Distance Geometry. Oxford University Press, Oxford (1953)

    MATH  Google Scholar 

  3. 3.

    Cardozo, T., Chaer Nascimento, M.: Private communication (2012)

  4. 4.

    COIN-OR: Introduction to IPOPT: A tutorial for downloading, installing, and using IPOPT (2006)

  5. 5.

    Fletcher, R., Leyffer, S.: User manual for FILTER. Technical Report, University of Dundee, London (1999)

  6. 6.

    Fourer, R., Gay, D.: The AMPL Book. Duxbury Press, Pacific Grove (2002)

    Google Scholar 

  7. 7.

    Gill, P.: User’s Guide for SNOPT 5.3. Systems Optimization Laboratory. Department of EESOR, Stanford University, California (1999)

  8. 8.

    Hollauer, E., Nascimento, M.: A generalized multistructural wave function. J. Chem. Phys. 99, 1207 (1993)

    Article  Google Scholar 

  9. 9.

    Janes, P.: Rigorous numerical approaches in electronic structure theory. Ph.D. Thesis, Australian National University (2011)

  10. 10.

    Janes, P., Rendell, A.: Deterministic global optimization in ab-initio quantum chemistry. J. Glob. Optim. 56(2), 537–558 (2013)

    MathSciNet  Article  MATH  Google Scholar 

  11. 11.

    Lavor, C., Cardozo, T., Nascimento, M.A.C.: Using an interval branch-and-bound algorithm in the Hartree–Fock method. Int. J. Quantum Chem. 103, 500–504 (2005)

    Article  Google Scholar 

  12. 12.

    Lavor, C., Liberti, L., Maculan, N., Chaer Nascimento, M.: Solving Hartree–Fock systems with global optimization methods. Europhys. Lett. 5(77), 50006p1–50006p5 (2007)

    Google Scholar 

  13. 13.

    Levine, I.: Quantum Chemistry, 2nd edn. Prentice-Hall, Upper Saddle River (2000)

    Google Scholar 

  14. 14.

    Liberti, L.: Reformulations in mathematical programming: definitions and systematics. RAIRO-RO 43(1), 55–86 (2009)

    MathSciNet  Article  MATH  Google Scholar 

  15. 15.

    Liberti, L.: Modelling rank constraints in mathematical programming. In: Pickl, S., et al. (eds.) Proceedings of the 11th Cologne-Twente Workshop on Graphs and Combinatorial Optimization. Universität der Bundeswehr, München (2012)

  16. 16.

    Liberti, L.: Reformulations in mathematical programming: automatic symmetry detection and exploitation. Math. Program. A 131, 273–304 (2012)

    MathSciNet  Article  MATH  Google Scholar 

  17. 17.

    Liberti, L.: Symmetry in mathematical programming. In: Lee, J., Leyffer, S. (eds.) Mixed Integer Nonlinear Programming, IMA, vol. 154, pp. 263–286. Springer, New York (2012)

    Google Scholar 

  18. 18.

    Liberti, L., Lavor, C., Nascimento, M.C., Maculan, N.: Reformulation in mathematical programming: an application to quantum chemistry. Discrete Appl. Math. 157, 1309–1318 (2009)

    MathSciNet  Article  MATH  Google Scholar 

  19. 19.

    Martin, R.: Electronic Structure: Basic Theory and Practical Methods. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  20. 20.

    Murray, W., Gill, P., Raman, R., Kalvelagen, E.: GAMS/MINOS: a solver for large-scale nonlinear optimization problems. Technical Report 10.1.1.16.8658, CiteSeerX (2007)

  21. 21.

    Penrose, R.: The Road to Reality. Knopf, New York (2004)

    Google Scholar 

  22. 22.

    Rendl, F.: Semidefinite relaxations for partitioning, assignment and ordering problems. 4OR 10(4), 321–346 (2012)

    MathSciNet  Article  MATH  Google Scholar 

  23. 23.

    Schoen, F.: Two-phase methods for global optimization. In: Pardalos, P., Romeijn, H. (eds.) Handbook of Global Optimization, vol. 2, pp. 151–177. Kluwer, Dordrecht (2002)

    Google Scholar 

  24. 24.

    Schrödinger, E.: Quantisierung als Eigenwertproblem. Ann. Phys. 384, 361–377 (1926)

    Article  MATH  Google Scholar 

  25. 25.

    Solis, F., Wets, R.: Minimization of random search techniques. Math. Oper. Res. 6(1), 19–30 (1981)

    MathSciNet  Article  MATH  Google Scholar 

  26. 26.

    Spellucci, P.: DONLP2 Users Guide. TU Darmstadt, Darmstadt (2009)

    Google Scholar 

  27. 27.

    Szabo, A., Ostlund, N.: Modern Quantum Chemistry. McGraw-Hill, New York (1989)

    Google Scholar 

  28. 28.

    Zorn, K., Sahinidis, N.: Hartree fock self-consistent calculations: global optimization of electronic structure. In: Proceedings of 10th AIChE Annual Meeting. AIChE (2010)

Download references

Acknowledgements

The authors are thankful to Brazilian research agencies FAPERJ, FAPESP, CAPES and CNPq for financial support, and to M.A. Chaer Nascimento and T.M. Cardozo for useful discussions leading to the formulation of Eq. (4). The first author (LL) has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie Grant Agreement No. 764759 “MINOA”.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Leo Liberti.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liberti, L., Lavor, C. & Maculan, N. A mathematical programming formulation for the Hartree–Fock problem on open-shell systems. Optim Lett 13, 429–437 (2019). https://doi.org/10.1007/s11590-019-01386-0

Download citation

Keywords

  • Quantum chemistry
  • Mathematical programming
  • Linear independence
  • Rank constraint