Skip to main content
Log in

A polynomial-time algorithm for finding critical nodes in bipartite permutation graphs

  • Original Paper
  • Published:
Optimization Letters Aims and scope Submit manuscript

Abstract

In this paper, we propose a polynomial-time algorithm for solving the Component-Cardinality-Constrained Critical Node Problem (3C-CNP) on bipartite permutation graphs. This problem, which is a variant of the well-known Critical Node Detection problem, consists in finding the minimal subset of nodes within a graph, the deletion of which results in a set of connected components of at most K nodes each one, where K is a given integer. The proposed algorithm is a dynamic programming scheme of time complexity \(O(nK^2)\), where n is the number of nodes. To provide evidences of algorithm’s efficiency, different experiments have been performed on randomly generated graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. Only the execution time of the equations is computed, without the time of loading data from files.

References

  1. Arulselvan, A., Commander, C.W., Shylo, O., Pardalos, P.M.: Cardinality-constrained critical node detection problem. In: Gülpınar, N., Harrison, P., Rüstem, B. (eds.) Performance Models and Risk Management in Communications Systems, pp. 79–91. Springer, New York (2011)

    Chapter  Google Scholar 

  2. Dinh, T.N., Xuan, Y., Thai, M.T., Park, E., Znati, T.: On approximation of new optimization methods for assessing network vulnerability. In: INFOCOM, 2010 Proceedings IEEE, pp. 1–9. IEEE (2010)

  3. Kempe, D., Kleinberg, J., Tardos, É.: Influential nodes in a diffusion model for social networks. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) Automata, Languages and Programming. ICALP 2005. Lecture Notes in Computer Science, pp 1127–1138. Springer, Berlin (2005)

  4. Lalou, M., Tahraoui, M.A., Kheddouci, H.: The critical node detection problem in networks: a survey. Comput. Sci. Rev. 28, 92–117 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  5. Shen, S., Smith, J.C.: Polynomial-time algorithms for solving a class of critical node problems on trees and series-parallel graphs. Networks 60(2), 103–119 (2012)

    MathSciNet  MATH  Google Scholar 

  6. Yannakakis, M.: Node-and edge-deletion NP-complete problems. In: Proceedings of the Tenth Annual ACM Symposium on Theory of Computing, pp. 253–264. ACM (1978)

  7. Addis, B., Di Summa, M., Grosso, A.: Identifying critical nodes in undirected graphs: complexity results and polynomial algorithms for the case of bounded treewidth. Discrete Appl. Math. 161(16), 2349–2360 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Arulselvan, A., Commander, C.W., Elefteriadou, L., Pardalos, P.M.: Detecting critical nodes in sparse graphs. Comput. Oper. Res. 36(7), 2193–2200 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Di Summa, M., Grosso, A., Locatelli, M.: Complexity of the critical node problem over trees. Comput. Oper. Res. 38(12), 1766–1774 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dinh, T.N., Thai, M.T.: Assessing attack vulnerability in networks with uncertainty. In: IEEE International Conference on Computer Communications (INFOCOM). IEEE (2015)

  11. Aringhieri, R., Grosso, A., Hosteins, P., Scatamacchia, R.: A preliminary analysis of the distance based critical node problem. Electron. Notes Discrete Math. 55, 25–28 (2016)

    Article  MATH  Google Scholar 

  12. Aringhieri, R., Grosso, A., Hosteins, P., Scatamacchia, R.: Polynomial and pseudo-polynomial time algorithms for different classes of the distance critical node problem. Discrete Appl. Math. (2018). https://doi.org/10.1016/j.dam.2017.12.035

  13. Veremyev, A., Prokopyev, O.A., Pasiliao, E.L.: Critical nodes for distance-based connectivity and related problems in graphs. Networks 66(3), 170–195 (2015)

    Article  MathSciNet  Google Scholar 

  14. Lalou, M., Tahraoui, M.A., Kheddouci, H.: Component-cardinality-constrained critical node problem in graphs. Discrete Appl. Math. 210, 150–163 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  15. Berger, A., Grigoriev, A., Zwaan, R.: Complexity and approximability of the k-way vertex cut. Networks 63(2), 170–178 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. Shen, S., Smith, J.C., Goli, R.: Exact interdiction models and algorithms for disconnecting networks via node deletions. Discrete Optim. 9(3), 172–188 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Nguyen, D.T., Shen, Y., Thai, M.T.: Detecting critical nodes in interdependent power networks for vulnerability assessment. IEEE Trans. Smart Grid 4(1), 151–159 (2013)

    Article  Google Scholar 

  18. Aringhieri, R., Grosso, A., Hosteins, P., Scatamacchia, R.: A general evolutionary framework for different classes of critical node problems. Eng. Appl. Artif. Intell. 55, 128–145 (2016)

    Article  MATH  Google Scholar 

  19. Dinh, T.N., Thai, M.T.: Precise structural vulnerability assessment via mathematical programming. In: Military Communications Conference, 2011-MILCOM 2011, pp. 1351–1356. IEEE (2011)

  20. Dinh, T.N., Thai, M.T.: Network under joint node and link attacks: vulnerability assessment methods and analysis. IEEE/ACM Trans. Netw. 23(3), 1001–1011 (2015)

    Article  Google Scholar 

  21. Di Summa, M., Grosso, A., Locatelli, M.: Branch and cut algorithms for detecting critical nodes in undirected graphs. Comput. Optim. Appl. 53(3), 649–680 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  22. Oosten, M., Rutten, J.H., Spieksma, F.C.: Disconnecting graphs by removing vertices: a polyhedral approach. Stat. Neerl. 61(1), 35–60 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  23. Arulselvan, A., Commander, C.W., Pardalos, P.M., Shylo., O.: Managing network risk via critical node identification. In: Gulpinar, N., Rustem, B. (eds.) Risk Management in Telecommunication Networks. Springer, Berlin (2007)

  24. Ventresca, M., Aleman, D.: A randomized algorithm with local search for containment of pandemic disease spread. Comput. Oper. Res. 48, 11–19 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  25. Ventresca, M.: Global search algorithms using a combinatorial unranking-based problem representation for the critical node detection problem. Comput. Oper. Res. 39(11), 2763–2775 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  26. Hermelin, D., Kaspi, M., Komusiewicz, C., Navon, B.: Parameterized complexity of critical node cuts. Theor. Comput. Sci. 651, 62–75 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  27. Veremyev, A., Prokopyev, O.A., Pasiliao, E.L.: An integer programming framework for critical elements detection in graphs. J. Combin. Optim. 28(1), 233–273 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  28. Brandes, U.: A faster algorithm for betweenness centrality. J. Math. Sociol. 25(2), 163–177 (2001)

    Article  MATH  Google Scholar 

  29. Spinrad, J., Brandstädt, A., Stewart, L.: Bipartite permutation graphs. Discrete Appl. Math. 18(3), 279–292 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  30. Uehara, R., Valiente, G.: Linear structure of bipartite permutation graphs and the longest path problem. Inf. Process. Lett. 2(103), 71–77 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  31. Tomaino, V., Arulselvan, A., Veltri, P., Pardalos, P.M.: Studying connectivity properties in human protein-protein interaction network in cancer pathway. In: Pardalos, P., Xanthopoulos, P., Zervakis, M. (eds.) Data Mining for Biomarker Discovery, pp. 187–197. Springer, Boston (2012)

    Chapter  Google Scholar 

  32. Lalou, M., Kheddouci, H.: Least squares method for diffusion source localization in complex networks. In: Cherifi, H., Gaito, S., Quattrociocchi, W., Sala, A. (eds.) Complex Networks & Their Applications V, pp. 473–485. Springer, Cham (2016)

    Google Scholar 

  33. Lalou, M., Kheddouci, H., Hariri, S.: Identifying the cyber attack origin with partial observation: a linear regression based approach. In: 2017 IEEE 2nd International Workshops on Foundations and Applications of Self* Systems (FAS* W), pp. 329–333. IEEE (2017)

  34. Michael, R.G., David, S.J.: Computers and Intractability: A Guide to the Theory of NP-Completeness. WH Freeman & Co., San Francisco (1979)

    MATH  Google Scholar 

  35. Balas, E., de Souza, C.C.: The vertex separator problem: a polyhedral investigation. Math. Program. 103(3), 583–608 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  36. Veremyev, A., Boginski, V., Pasiliao, E.L.: Exact identification of critical nodes in sparse networks via new compact formulations. Optim. Lett. 8(4), 1245–1259 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  37. Pullan, W.: Heuristic identification of critical nodes in sparse real-world graphs. J. Heuristics 21(5), 577–598 (2015)

    Article  Google Scholar 

  38. Saitoh, T., Otachi, Y., Yamanaka, K., Uehara, R.: Random generation and enumeration of bipartite permutation graphs. J. Discrete Algorithms 10, 84–97 (2012)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed Lalou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lalou, M., Kheddouci, H. A polynomial-time algorithm for finding critical nodes in bipartite permutation graphs. Optim Lett 13, 1345–1364 (2019). https://doi.org/10.1007/s11590-018-1371-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11590-018-1371-6

Keywords

Navigation