Permutation flowshop manufacturing cell scheduling problems with deteriorating jobs and sequence dependent setup times under dominant machines

Abstract

This paper investigates permutation flowshop manufacturing cell scheduling problems with deteriorating jobs and sequence dependent setup times under dominant machines. In the proposed models, we need to make joint decisions on part families sequencing and jobs sequencing within each family. To solve the makespan minimization problem, the structural properties of the optimal solutions are derived, based on which an optimization algorithm is developed. Then, we consider the total completion time minimization problem and propose a useful lemma for the optimal solutions. Finally, we discuss two special cases of the problem and propose optimization algorithms to solve them respectively.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Cheng, M., Tadikamalla, P.R., Shang, J., Zhang, B.: Two-machine flow shop scheduling with deteriorating jobs: minimizing the weighted sum of makespan and total completion time. J. Oper. Res. Soc. 66(5), 709–719 (2015)

    Article  Google Scholar 

  2. 2.

    Cheng, M., Tadikamalla, P.R., Shang, J., Zhang, S.: Bicriteria hierarchical optimization of two-machine flow shop scheduling problem with time-dependent deteriorating jobs. Eur. J. Oper. Res. 234(3), 650–657 (2014)

    MathSciNet  Article  MATH  Google Scholar 

  3. 3.

    Cheng, T.C.E., Ding, Q., Lin, B.M.T.: A concise survey of scheduling with time-dependent processing times. Eur. J. Oper. Res. 152, 1–13 (2004)

    MathSciNet  Article  MATH  Google Scholar 

  4. 4.

    Fan, W., Pei, J., Liu, X., Pardalos, P.M., Kong, M.: Serial-batching group scheduling with release times and the combined effects of deterioration and truncated job-dependent learning. J. Glob. Optim. (2017). https://doi.org/10.1007/s10898-017-0536-7

    MATH  Google Scholar 

  5. 5.

    Graham, R.L., Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G.: Optimization and approximation in deterministic sequencing and scheduling: a survey. Ann. Discrete Math. 5(1), 287–326 (1979)

    MathSciNet  Article  MATH  Google Scholar 

  6. 6.

    He, N., Qiao, Y., Wu, N., Qu, T.: Total completion time minimization for scheduling of two-machine flow shop with deterioration jobs and setup time. Adv. Mech. Eng. 9(4), 1687814017698887 (2017)

    Google Scholar 

  7. 7.

    Hendizadeh, S.H., ElMekkawy, T.Y., Wang, G.G.: Bi-criteria scheduling of a flowshop manufacturing cell with sequence dependent setup times. Eur. J. Ind. Eng. 1(4), 391–413 (2007)

    Article  Google Scholar 

  8. 8.

    Ho, J.C., Gupta, J.N.D.: Flowshop scheduling with dominant machines. Comput. Oper. Res. 22(2), 237–246 (1995)

    Article  MATH  Google Scholar 

  9. 9.

    Kampmeyer, M., Knust, S., Waldherr, S.: Solution algorithms for synchronous flow shop problems with two dominating machines. Comput. Oper. Res. 74, 42–52 (2016)

    MathSciNet  Article  MATH  Google Scholar 

  10. 10.

    Koulamas, C., Kyparisis, G.J.: Single-machine scheduling problems with sequence dependent setup times. Eur. J. Oper. Res. 187(3), 1045–1049 (2008)

    MathSciNet  Article  MATH  Google Scholar 

  11. 11.

    Lee, W.C., Wu, C.C., Chung, Y.H., Liu, H.C.: Minimizing the total completion time in permutation flow shop with machine-dependent job deterioration rates. Comput. Oper. Res. 36(6), 2111–2121 (2009)

    Article  MATH  Google Scholar 

  12. 12.

    Lin, B.M.T., Cheng, T.C.E.: Two machine flowshop scheduling with conditional deteriorating second operations. Int. Trans. Oper. Res. 13(2), 91–98 (2006)

    MathSciNet  Article  MATH  Google Scholar 

  13. 13.

    Lin, S.W., Ying, K.C.: Scheduling a bi-criteria flowshop manufacturing cell with sequence-dependent family setup times. Eur. J. Ind. Eng. 6(4), 474–496 (2012)

    MathSciNet  Article  Google Scholar 

  14. 14.

    Liu, P., Yi, N., Zhou, X., Gong, H.: Scheduling two agents with sum-of-processing-times-based deterioration on a single machine. Appl. Math. Comput. 219(17), 8848–8855 (2013)

    MathSciNet  MATH  Google Scholar 

  15. 15.

    Liu, X., Lu, S., Pei, J., Pardalos, P.M.: A hybrid VNS-HS algorithm for a supply chain scheduling problem with deteriorating jobs. Int. J. Prod. Res. (2017). https://doi.org/10.1080/00207543.2017.1418986

    Google Scholar 

  16. 16.

    Lu, Y.Y.: Research on no-idle permutation flowshop scheduling with time-dependent learning effect and deteriorating jobs. Appl. Math. Model. 40(4), 3447–3450 (2016)

    MathSciNet  Article  Google Scholar 

  17. 17.

    Nowicki, E., Smutnicki, C.: A fast tabu search algorithm for the permutation flow-shop problem. Eur. J. Oper. Res. 91(1), 160–175 (1996)

    Article  MATH  Google Scholar 

  18. 18.

    Oron, D.: Scheduling controllable processing time jobs in a deteriorating environment. J. Oper. Res. Soc. 65(1), 49–56 (2014)

    Article  Google Scholar 

  19. 19.

    Osman, I.H., Potts, C.N.: Simulated annealing for permutation flow-shop scheduling. Omega 17(6), 551–557 (2009)

    Article  Google Scholar 

  20. 20.

    Pei, J., Pardalos, P.M., Liu, X., Fan, W., Yang, S.: Serial batching scheduling of deteriorating jobs in a two-stage supply chain to minimize the makespan. Eur. J. Oper. Res. 244(1), 13–25 (2015)

    MathSciNet  Article  MATH  Google Scholar 

  21. 21.

    Pei, J., Liu, X., Pardalos, P.M., Fan, W., Yang, S.: Single machine serial-batching scheduling with independent setup time and deteriorating job processing times. Optim. Lett. 9(1), 91–104 (2015)

    MathSciNet  Article  MATH  Google Scholar 

  22. 22.

    Pei, J., Liu, X., Pardalos, P.M., Migdalas, A., Yang, S.: Serial-batching scheduling with time-dependent setup time and effects of deterioration and learning on a single-machine. J. Glob. Optim. 67(1–2), 251–262 (2017)

    MathSciNet  Article  MATH  Google Scholar 

  23. 23.

    Pei, J., Liu, X., Pardalos, P.M., Fan, W., Yang, S.: Scheduling deteriorating jobs on a single serial-batching machine with multiple job types and sequence-dependent setup times. Ann. Oper. Res. 249(1–2), 175–195 (2017)

    MathSciNet  Article  MATH  Google Scholar 

  24. 24.

    Pei, J., Liu, X., Fan, W., Pardalos, P.M., Lu, S.: A hybrid BA-VNS algorithm for coordinated serial-batching scheduling with deteriorating jobs, financial budget, and resource constraint in multiple manufacturers. Omega (2017). https://doi.org/10.1016/j.omega.2017.12.003

    Google Scholar 

  25. 25.

    Sun, L.H., Sun, L.Y., Wang, M.Z., Wang, J.B.: Flow shop makespan minimization scheduling with deteriorating jobs under dominating machines. Int. J. Prod. Econ. 138(1), 195–200 (2012)

    Article  Google Scholar 

  26. 26.

    Tang, L., Zhao, X., Liu, J., Leung, J.Y.T.: Competitive two-agent scheduling with deteriorating jobs on a single parallel-batching machine. Eur. J. Oper. Res. 263, 401–411 (2017)

    MathSciNet  Article  MATH  Google Scholar 

  27. 27.

    Wang, J.B., Li, L.: Machine scheduling with deteriorating jobs and modifying maintenance activities. Comput. J. 61, 1–7 (2017)

    MathSciNet  Google Scholar 

  28. 28.

    Wang, J.B., Wang, M.Z.: Minimizing makespan in three-machine flow shops with deteriorating jobs. Comput. Oper. Res. 40(2), 547–557 (2013)

    Article  MATH  Google Scholar 

  29. 29.

    Wang, J.B., Lin, L., Shan, F.: Flow shop scheduling with effects of learning and deterioration. J. Appl. Math. Comput. 26(1–2), 367–379 (2008)

    MathSciNet  Article  MATH  Google Scholar 

  30. 30.

    Wang, L., Sun, L.Y., Sun, L.H., Wang, J.B.: On three-machine flow shop scheduling with deteriorating jobs. Int. J. Prod. Econ. 125(1), 185–189 (2010)

    MathSciNet  Article  Google Scholar 

  31. 31.

    Yan, H.S., Li, W.C.: A scheduling procedure for a flow shop-like knowledgeable manufacturing cell with self-evolutionary features. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 230(12), 2296–2306 (2016)

    Article  Google Scholar 

  32. 32.

    Yin, Y., Wang, Y., Cheng, T.C.E., Liu, W., Li, J.: Parallel-machine scheduling of deteriorating jobs with potential machine disruptions. Omega 69, 17–28 (2017)

    Article  Google Scholar 

  33. 33.

    Ying, K.C., Lee, Z.J., Lu, C.C., Lin, S.W.: Metaheuristics for scheduling a no-wait flowshop manufacturing cell with sequence-dependent family setups. Int. J. Adv. Manuf. Technol. 58(5), 671–682 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Nos. 71231004, 71601065, 71690235, 71501058, 71601060), and Innovative Research Groups of the National Natural Science Foundation of China (71521001), the Humanities and Social Sciences Foundation of the Chinese Ministry of Education (No. 15YJC630097), Anhui Province Natural Science Foundation (No. 1608085QG167), Base of Introducing Talents of Discipline to Universities for Optimization and Decision-making in the Manufacturing Process of Complex Product (111 project), Fundamental Research Funds for the Central Universities (JZ2018HGTA0222, JZ2018HGBZ0113). Panos M. Pardalos is partially supported by the project of Distinguished International Professor by the Chinese Ministry of Education (MS2014HFGY026).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Shaojun Lu or Xinbao Liu or Jun Pei.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lu, S., Liu, X., Pei, J. et al. Permutation flowshop manufacturing cell scheduling problems with deteriorating jobs and sequence dependent setup times under dominant machines. Optim Lett (2018). https://doi.org/10.1007/s11590-018-1322-2

Download citation

Keywords

  • Scheduling
  • Flowshop
  • Part family
  • Deteriorating jobs
  • Sequence dependent setup times
  • Dominant machines