Skip to main content
Log in

Communication topology optimization for three-dimensional persistent formation with leader constraint

  • Original Paper
  • Published:
Optimization Letters Aims and scope Submit manuscript

Abstract

We address the communication topology optimization problem for a three-dimensional persistent formation with leader constraint to minimize the formation communication cost while maintaining its shape. We first analyze the formation shape, network topology, communication topology, and leader constraint of a three-dimensional persistent formation to establish the optimization model of the problem. We then propose an exact algorithm, which includes three kernel sub-algorithms, to solve the model, and theoretically prove its validity. A numerical example is shown to demonstrate the effectiveness of the algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Goh, S.T., Zekavat, S.A., Abdelkhalik, O.: LEO satellite formation for SSP: energy and doppler analysis. IEEE Trans. Aerosp. Electron. Syst. 51(1), 18–30 (2015)

    Article  Google Scholar 

  2. Dai, Y., Kim, Y., Wee, S., Lee, D., Lee, S.: Symmetric caging formation for convex polygonal object transportation by multiple mobile robots based on fuzzy sliding mode control. ISA Trans. 60, 321–332 (2016)

    Article  Google Scholar 

  3. Anderson, B.D.O., Fidan, B., Yu, C., Walle, D.: UAV Formation Control: Theory and Application. Recent Advances in Learning and Control, pp. 15–33. Springer, Berlin (2008)

    Book  Google Scholar 

  4. Park, M.C., Ahn, H.S.: Distance-based acyclic minimally persistent formations with non-steepest descent control. Int. J. Control Autom. Syst. 14(1), 163–173 (2016)

    Article  MathSciNet  Google Scholar 

  5. Kang, S.M., Park, M.C., Ahn, H.S.: Distance-based cycle-free persistent formation: global convergence and experimental test with a group of quadcopters. IEEE Trans. Industr. Electron. 64(1), 380–389 (2017)

    Article  Google Scholar 

  6. Cao, H., Bai, Y.Q., Chen, J., Fang, H.: Control of 2D minimally persistent formations with three co-leaders in a cycle. Int. J. Adv. Rob. Syst. 10(21), 1–9 (2013)

    Google Scholar 

  7. Park, M.C., Jeong, K., Ahn, H.S.: Formation stabilization and resizing based on the control of inter-agent distances. Int. J. Robust Nonlinear Control 25(14), 2532–2546 (2015)

    Article  MathSciNet  Google Scholar 

  8. Hendrickx, J.M., Anderson, B.D.O., Delvenne, J.C., Blondel, V.D.: Directed graphs for the analysis of rigidity and persistence in autonomous agent systems. Int. J. Robust Nonlinear Control 17(10–11), 960–981 (2007)

    Article  MathSciNet  Google Scholar 

  9. Yu, C., Hendrickx, J.M., Fidan, B., Anderson, B.D.O., Blondel, V.D.: Three and higher dimensional autonomous formations: rigidity, persistence and structural persistence. Automatica 43, 387–402 (2007)

    Article  MathSciNet  Google Scholar 

  10. Wang, G.Q., Luo, H., Hu, X.X., Ma, H.W., Yang, S.L.: Fault-tolerant communication topology management based on minimum cost arborescence for leader–follower UAV formation under communication faults. Int. J. Adv. Rob. Syst. 14(2), 1–17 (2017)

    Google Scholar 

  11. Hendrickx, J.M., Fidan, B., Changbin, Y., Anderson, B.D.O., Blondel, V.D.: Formation reorganization by primitive operations on directed graphs. IEEE Trans. Autom. Control 53(4), 968–979 (2008)

    Article  MathSciNet  Google Scholar 

  12. Smith, B.S., Egerstedt, M., Howard, A.: Automatic generation of persistent formations for multi-agent networks under range constraints. Mobile Netw. Appl. 14(3), 322–335 (2009)

    Article  Google Scholar 

  13. Luo, X.Y., Shao, S.K., Zhang, Y.Y., Li, S.B., Guan, X.P., Liu, Z.X.: Generation of minimally persistent circle formation for a multi-agent system. Chin. Phys. B 23(2), 614–622 (2014)

    Google Scholar 

  14. Luo, X.Y., Li, S.B., Guan, X.P.: Automatic generation of min-weighted persistent formations. Chin. Phys. B 18(8), 3104–3114 (2009)

    Article  Google Scholar 

  15. Wang, G.Q., Luo, H., Hu, X.X.: Generation of optimal persistent formations for heterogeneous multi-agent systems with a leader constraint. Chin. Phys. B 27(2), 028901 (2018)

    Article  Google Scholar 

  16. Yong, E.: Autonomous drones flock like birds. Nature. https://www.nature.com/news/autonomous-drones-flock-like-birds-1.14776. Accessed 20 Oct 2017

  17. Cao, X., Zhu, D.Q., Yang, S.X.: Multi-AUV target search based on bioinspired neurodynamics model in 3-D underwater environments. IEEE Trans. Neural Netw. Learn. Syst. 27(11), 2364–2374 (2016)

    Article  MathSciNet  Google Scholar 

  18. Pei, J., Pardalos, P.M., Liu, X.B., Fan, W.J., Yang, S.L.: Serial batching scheduling of deteriorating jobs in a two-stage supply chain to minimize the makespan. Eur. J. Oper. Res. 244(1), 13–25 (2015)

    Article  MathSciNet  Google Scholar 

  19. Pei, J., Liu, X.B., Fan, W.J., Pardalos, P.M., Lu, S.J.: A hybrid BA-VNS algorithm for coordinated serial-batching scheduling with deteriorating jobs, financial budget, and resource constraint in multiple manufacturers. OMEGA (2017)

  20. Pei, J., Liu, X.B., Pardalos, P.M., Fan, W.J., Yang, S.L.: Scheduling deteriorating jobs on a single serial-batching machine with multiple job types and sequence-dependent setup times. Ann. Oper. Res. 249(1–2), 175–195 (2017)

    Article  MathSciNet  Google Scholar 

  21. Pei, J., Liu, X.B., Pardalos, P.M., Migdalas, A., Yang, S.L.: Serial-batching scheduling with time-dependent setup time and effects of deterioration and learning on a single-machine. J. Global Optim. 67(1–2), 251–262 (2017)

    Article  MathSciNet  Google Scholar 

  22. Xue, L., Chen, X., Zhao, J., Guan, X.A.: Fault-tolerant topology control algorithm base on optimally rigid graph in 3-dimensional wireless sensor networks. In: 2015 34th Chinese Control Conference, pp. 7795–7800 (2015)

  23. Atofigh, E.: Edmonds’s algorithm. https://sourceforge.net/projects/edmonds-alg/. Accessed 20 October 2017

  24. Jacob, B., Guennebaud, G., Avery, P., Bachrach, A., Barthelemy, S., Becker, C., et al.: Eigen. http://eigen.tuxfamily.org/index.php?title=Main_Page. Accessed 25 October 2017

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant Nos. 71671059, 71401048, 71521001, 71690230, 71690235, and 71472058), the Anhui Provincial Natural Science Foundation, China (Grant No. 1808085MG213, 1508085MG140), and the Fundamental Research Funds for the Central Universities (JZ2018HGBZ0128).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to He Luo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, G., Luo, H., Hu, X. et al. Communication topology optimization for three-dimensional persistent formation with leader constraint. Optim Lett 15, 513–535 (2021). https://doi.org/10.1007/s11590-018-1308-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11590-018-1308-0

Keywords

Navigation