An improved mixed-integer programming model for the double row layout of facilities


We consider the double row layout problem, which is how to allocate a given number of machines at locations on either side of a corridor so that the total cost to transport materials among these machines is minimized. We propose modifications to a mixed-integer programming model in the literature, obtaining a tighter model. Further, we describe variants of the new model that are even tighter. Computational results show that the new model and its variants perform considerably better than the one in the literature, leading to both fewer enumeration tree nodes and smaller solution times.

This is a preview of subscription content, access via your institution.

Fig. 1


  1. 1.

    Amaral, A.R.S.: On the exact solution of a facility layout problem. Eur. J. Oper. Res. 173(2), 508–518 (2006).

    MathSciNet  Article  MATH  Google Scholar 

  2. 2.

    Amaral, A.R.S.: An exact approach to the one-dimensional facility layout problem. Oper. Res. 56(4), 1026–1033 (2008).

    MathSciNet  Article  MATH  Google Scholar 

  3. 3.

    Amaral, A.R.S.: A mixed 0–1 linear programming formulation for the exact solution of the minimum linear arrangement problem. Optim. Lett. 3(4), 513–520 (2009a).

    MathSciNet  Article  MATH  Google Scholar 

  4. 4.

    Amaral, A.R.S.: A new lower bound for the single row facility layout problem. Discrete Appl. Math. 157(1), 183–190 (2009).

    MathSciNet  Article  MATH  Google Scholar 

  5. 5.

    Amaral, A.R.S.: The corridor allocation problem. Comput. Oper. Res. 39(12), 3325–3330 (2012).

    Article  MATH  Google Scholar 

  6. 6.

    Amaral, A.R.S.: Optimal solutions for the double row layout problem. Optim. Lett. 7, 407–413 (2013a).

    MathSciNet  Article  MATH  Google Scholar 

  7. 7.

    Amaral, A.R.S.: A parallel ordering problem in facilities layout. Comput. Oper. Res. 40(12), 2930–2939 (2013).

    MathSciNet  Article  MATH  Google Scholar 

  8. 8.

    Amaral, A.R.S., Letchford, A.N.: A polyhedral approach to the single row facility layout problem. Math. Program. 141(1–2), 453–477 (2013).

    MathSciNet  Article  MATH  Google Scholar 

  9. 9.

    Bukchin, Y., Tzur, M.: A new milp approach for the facility process-layout design problem with rectangular and l/t shape departments. Int. J. Prod. Res. 52(24), 7339–7359 (2014).

    Article  Google Scholar 

  10. 10.

    Chae, J., Regan, A.C.: Layout design problems with heterogeneous area constraints. Comput. Ind. Eng. 102, 198–207 (2016).

    Article  Google Scholar 

  11. 11.

    Chung, J., Tanchoco, J.M.A.: The double row layout problem. Int. J. Prod. Res. 48(3), 709–727 (2010).

    Article  MATH  Google Scholar 

  12. 12.

    Hathhorn, J., Sisikoglu, E., Sir, M.Y.: A multi-objective mixed-integer programming model for a multi-floor facility layout. Int. J. Prod. Res. 51(14), 4223–4239 (2013).

    Article  Google Scholar 

  13. 13.

    Heragu, S.S., Kusiak, A.: Machine layout problem in flexible manufacturing systems. Oper. Res. 36(2), 258–268 (1988).

    Article  Google Scholar 

  14. 14.

    Javadi, B., Jolai, F., Slomp, J., Rabbani, M., Tavakkoli-Moghaddam, R.: An integrated approach for the cell formation and layout design in cellular manufacturing systems. Int. J. Prod. Res. 51(20), 6017–6044 (2013).

    Article  Google Scholar 

  15. 15.

    Klausnitzer, A., Lasch, R.: Extended Model Formulation of the Facility Layout Problem with Aisle Structure, pp. 89–101. Springer, Cham (2016).

    Google Scholar 

  16. 16.

    Niroomand, S., Vizvári, B.: A mixed integer linear programming formulation of closed loop layout with exact distances. J. Ind. Prod. Eng. 30(3), 190–201 (2013).

    Google Scholar 

  17. 17.

    Simmons, D.M.: One-dimensional space allocation: an ordering algorithm. Oper. Res. 17(5), 812–826 (1969).

    MathSciNet  Article  MATH  Google Scholar 

Download references


The second author was supported by FAP/UFES and CAPES (Grant Number 99999.002643/2015-04).

Author information



Corresponding author

Correspondence to A. R. S. Amaral.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Secchin, L.D., Amaral, A.R.S. An improved mixed-integer programming model for the double row layout of facilities. Optim Lett 13, 193–199 (2019).

Download citation


  • Facility layout
  • Integer programming
  • Combinatorial optimization