Advertisement

Optimality conditions for semi-infinite programming problems involving generalized convexity

  • Nader Kanzi
  • Giuseppe Caristi
  • Ali Sadeghieh
Original Paper
  • 128 Downloads

Abstract

We apply some advanced tools of quasiconvex analysis to establish Karush–Kuhn–Tucker type necessary and sufficient optimality conditions for non-differentiable semi-infinite programming problems. In addition, we propose a linear characterization of optimality for the mentioned problems. Examples are also designed to analyze and illustrate the results obtained.

Keywords

Semi-infinite programming Plastria function Gutiérrez functions Optimality conditions Linear characterization 

Notes

Acknowledgements

The authors are grateful to professor Miguel Ángel Goberna for his many helpful suggestions which have improved the presentation of the paper. Also, we would like to thank the three anonymous referees for carefully reading our work and for their helpful comments.

References

  1. 1.
    Cánovas, M.J., Hantoute, A., Parra, J., Toledo, F.J.: Boundary of subdifferentials and calmness moduli in linear semi-infinite optimization. Optim. Lett. 9, 513–521 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Gutiérrez Díez, J.M.: Infragradients and directions of decrease. Rev. Real Acad. Cienc. Exact. Fís. Natur. Madrid 78, 523–532 (1984)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Jeyakumar, V., Rubinov, A.M., Glover, B.M., Ishizuku, Y.: Inequality systems and global optimization. J. Math. Anal. Appl. 202, 900–919 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Kabgani, A., Soleimani-damaneh, M.: The relationships between convexificators and Greenberg–Pierskalla subdifferentials for quasiconvex functions. Numer. Funct. Anal. Optim. 38, 1548–1563 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Kanzi, N.: Necessary optimality conditions for nonsmooth semi-infinite programming problems. J. Glob. Optim. 49, 713–725 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Kanzi, N.: Constraint qualifications in semi-infinite systems and their applications in nonsmooth semi-infinite problems with mixed constraints. SIAM J. Optim. 24, 559–572 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Kanzi, N., Nobakhtian, S.: Optimality conditions for nonsmooth semi-infinite programming. Optimization 59, 717–727 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Kanzi, N., Nobakhtian, S.: Nonsmooth semi-infinite programming problems with mixed constraints. J. Math. Anal. Appl. 351, 170–181 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Kanzi, N., Soleimani-damaneh, M.: Slater CQ, optimality and duality for quasiconvex semi-infinite optimization problems. J. Math. Anal. Appl. 434, 638–651 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Linh, N.T., Penot, J.P.: Optimality conditions for quasiconvex programming. SIAM J. Optim. 17, 500–510 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Li, W., Nahak, C., Singer, I.: Constraint qualifications in semi-infinite systems of convex inequalities. SIAM J. Optim. 11, 31–52 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Liu, Y., Goberna, M.A.: Asymptotic optimality conditions for linear semiinfinite programming. Optimization 65, 387–414 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    López, M.A., Still, G.: Semi-infinite programming. Eur. J. Oper. Res. 180, 491–518 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    López, M.A., Vercher, E.: Optimality conditions for nondifferentiable convex semi-infinite Programming. Math. Program. 27, 307–319 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Martinez-Legaz, J.E.: Weak lower sbdifferentials and applications. Optimization 21, 321–341 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Mordukhovich, B.S., Nghia, T.T.A.: Constraint qualification and optimality conditions in semi-infinite and infinite programming. Math. Program. 139, 271–300 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Mordukhovich, B.S., Nghia, T.T.A.: Nonsmooth cone-constrained optimization with applications to semi-infinite programming. Math. Oper. Res. 39, 301–324 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Mordukhovich, B.S., Nghia, T.T.A.: Subdifferentials of nonconvex supremum functions and their applications to semi-infinite and infinite programs with Lipschitzian data. SIAM J. Optim. 23, 406–431 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Penot, J.P.: Are generalized derivatives useful for generalized convex functions? In: Crouzeix, J.-P., Martinez-Legaz, J.E., Volle, M. (eds.) Generalized Convexity, Generalized Monotonicity: Recent Results, pp. 3–59. Kluwer, Dordrecht (1998)CrossRefGoogle Scholar
  20. 20.
    Plastria, F.: Lower subdifferentiable functions and their minimization by cutting plane. J. Optim. Theory Appl. 46, 37–53 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Rockafellar, R.T., Wets, J.B.: Variational Analysis. Springer, Berlin (1998)CrossRefzbMATHGoogle Scholar
  22. 22.
    Xu, M., Wu, S.Y., Ye, J.: Solving semi-infinite programs by smoothing projected gradient method. Comput. Optim. Appl. 59, 591–616 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Zhao, X.: On constraints qualification for an infinite system of quasiconvex inequalities in normed linear space. Taiwan. J. Math. 20(206), 685–697 (2016)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of MathematicsPayame Noor University (PNU)TehranIran
  2. 2.Department of EconomicsUniversity of MessinaMessinaItaly
  3. 3.Department of Mathematics, Yazd BranchIslamic Azad UniversityYazdIran

Personalised recommendations