Optimization Letters

, Volume 12, Issue 5, pp 945–957 | Cite as

Experiments on virtual private network design with concave capacity costs

  • Andrea Lodi
  • Ahmad Moradi
Original Paper


For the first time in the literature, this paper considers computational aspects of concave cost virtual private network design problems. It introduces careful bound tightening mechanisms and computationally demonstrates how such bound tightening could impressively improve convex relaxations of the problem. It turns out that, incorporating such bound tightening with a general solution approach could significantly enhance the behavior of the solution approach over the problem.


Virtual private network design Concave costs Bound tightening Spatial branch and bound 



We would like to thank the anonymous referees for a careful reading and constructive suggestions.


  1. 1.
    Altın, A., Amaldi, E., Belotti, P., Pınar, M.C.: Provisioning virtual private networks under traffic uncertainty. Networks 49, 100–115 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Belotti, P., Kirches, C., Leyffer, S., Linderoth, J., Luedtke, J., Mahajan, A.: Mixed-integer nonlinear optimization. Acta Numer. 22, 1–131 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Burer, S., Letchford, A.N.: Non-convex mixed-integer nonlinear programming: a survey. Surv. Oper. Res. Manag. Sci. 17(2), 97–106 (2012)MathSciNetGoogle Scholar
  4. 4.
    D’Ambrosio, C., Lodi, A., Martello, S.: Piecewise linear approximation of functions of two variables in MILP models. Oper. Res. Lett. 38(1), 39–46 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Grandoni, F., Rothvoß, T., Sanità, L.: From uncertainty to nonlinearity: solving virtual private network via single-sink buy-at-bulk. Math. Oper. Res. 36(2), 185–204 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Gupta, A., Kleinberg, J., Kumar, A., Rastogi, R., Yener, B.: Provisioning a virtual private network: a network design problem for multicommodity flow. In: Proceedings of 33th Annual ACM Symposium on Theory of Computing (STOC), Greece, Crete, pp. 389–398 (2001)Google Scholar
  7. 7.
    IBM: IBM ILOG CPLEX Optimization Studio.
  8. 8.
    McCormick, G.P.: Computability of global solutions to factorable nonconvex programs: part I convex underestimating problems. Math. Program. 10(1), 147–175 (1976)CrossRefzbMATHGoogle Scholar
  9. 9.
    Minoux, M.: Multicommodity Network Flow Models and Algorithms in Telecommunications. In Handbook of Optimization in Telecommunications, pp. 163–184. Springer, New York (2006)CrossRefzbMATHGoogle Scholar
  10. 10.
    Moradi, A., Lodi, A., Hashemi, S.M.: On the difficulty of virtual private network instances. Networks 63, 327–333 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Moradi, A., Lodi, A., Mehdi Hashemi, S.: Virtual private network design over the first Chvátal closure. RAIRO Oper. Res. 49(3), 569–588 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Rothvoß, T., Sanitá, L.: On the complexity of the asymmetric VPN problem. In: International Workshop on Approximation Algorithms for Combinatorial Optimization Problems (APPROX), pp. 326–338, Springer (2009)Google Scholar
  13. 13.
    Mattia, S.: The robust network loading problem with dynamic routing. Comput. Optim. Appl. 54, 619–643 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Orlowski, S., Pioro, M., Tomaszewski, A., Wessaly, R.: SNDlib 1.0 survivable network design library. In: Proceedings of the 3rd International Network Optimization Conference (INOC 2007), Spa, Belgium (2007)Google Scholar
  15. 15.
    SCIP Solving Constraint Integer Programs.
  16. 16.
    Tawarmalani, M., Sahinidis, N.V.: Convex extensions and envelopes of lower semicontinuous functions. Math. Program. 93(2), 247–263 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Vigerske, S.: Decomposition in multistage stochastic programming and a constraint integer programming approach to mixed-integer nonlinear programming. Humboldt-Universität Berlin, PhD diss (2012)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Canada Excellence Research ChairÉcole Polytechnique de MontréalMontréalCanada
  2. 2.University of MazandaranBabolsarIran

Personalised recommendations