Optimization Letters

, Volume 12, Issue 7, pp 1669–1681 | Cite as

An exact solution framework for the minimum cost dominating tree problem

  • Eduardo Álvarez-Miranda
  • Martin Luipersbeck
  • Markus Sinnl
Original Paper


The minimum cost dominating tree problem is a recently introduced NP-hard problem, which consists of finding a tree of minimal cost in a given graph, such that for every node of the graph, the node or one of its neighbours is in the tree. We present an exact solution framework combining a primal–dual heuristic with a branch-and-cut approach based on a transformation of the problem into a Steiner arborescence problem with an additional constraint. The effectiveness of our approach is evaluated on testbeds proposed in literature containing instances with up to 500 nodes. Our framework manages to solve all but four instances from literature to proven optimality within 3 h (most of them in a few seconds). We provide optimal solution values for 69 instances from literature for which the optimal solution was previously unknown.


Dominating tree Primal–dual heuristic Branch-and-cut 



E.A.-M. acknowledges the support of the Chilean Council of Scientific and Technological Research, CONICYT, through the Grant FONDECYT N.1180670 and through the Complex Engineering Systems Institute (ICM-FIC:P-05-004-F, CONICYT:FB0816). The research of M.S. was supported by the Austrian Research Fund (FWF, Project P 26755-N19). M.L. acknowledges the support of the University of Vienna through the uni:docs fellowship programme.


  1. 1.
    Adasme, P., Andrade, R., Leung, J., Lisser, A.: Models for minimum cost dominating trees. Electron. Notes Discrete Math. 52, 101–107 (2016)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Chaurasia, S., Singh, A.: A hybrid heuristic for dominating tree problem. Soft Comput. 20(1), 377–397 (2016)CrossRefGoogle Scholar
  3. 3.
    Chen, S., Ljubić, I., Raghavan, S.: The regenerator location problem. Networks 55(3), 205–220 (2010)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Dražić, Z., Čangalović, M., Kovačević-Vujčić, V.: A metaheuristic approach to the dominating tree problem. Optim. Lett. 11(6), 1155–1167 (2016)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Fischetti, M., Leitner, M., Ljubić, I., Luipersbeck, M., Monaci, M., Resch, M., Salvagnin, D., Sinnl, M.: Thinning out Steiner trees: a node-based model for uniform edge costs. Math. Program. Comput. 9(2), 203–229 (2017)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Fujie, T.: An exact algorithm for the maximum leaf spanning tree problem. Comput. Oper. Res. 30(13), 1931–1944 (2003)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Leitner, M., Ljubić, I., Salazar-González, J.-J., Sinnl, M.: An algorithmic framework for the exact solution of tree-star problems. Eur. J. Oper. Res. 261(1), 54–66 (2017)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Leitner, M., Ljubić, I., Luipersbeck, M., Sinnl, M.: A dual-ascent-based branch-and-bound framework for the prize-collecting Steiner tree and related problems. INFORMS J. Comput. (to appear)Google Scholar
  9. 9.
    Ljubić, I., Weiskircher, R., Pferschy, U., Klau, G., Mutzel, P., Fischetti, M.: An algorithmic framework for the exact solution of the prize-collecting Steiner tree problem. Math. Program. Ser. B 105, 427–449 (2006)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Ore, O.: Theory of Graphs, Volume 38 of Colloquium Publications, 1st edn. American Mathematical Society, Providence (1962)Google Scholar
  11. 11.
    Polzin, T., Daneshmand, S.: Improved algorithms for the Steiner problem in networks. Discrete Appl. Math. 112(1), 263–300 (2001)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Shin, I., Shen, Y., Thai, M.: On approximation of dominating tree in wireless sensor networks. Optim. Lett. 4(3), 393–403 (2010)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Sundar, S., Singh, A.: New heuristic approaches for the dominating tree problem. Appl. Soft Comput. 13(12), 4695–4703 (2013)CrossRefGoogle Scholar
  14. 14.
    Thai, M., Wang, F., Liu, D., Zhu, S., Du, D.: Connected dominating sets in wireless networks with different transmission ranges. IEEE Trans. Mob. Comput. 6(7), 721–730 (2007)CrossRefGoogle Scholar
  15. 15.
    Thai, M., Tiwari, R., Du, D.: On construction of virtual backbone in wireless ad hoc networks with unidirectional links. IEEE Trans. Mob. Comput. 7(9), 1098–1109 (2008)CrossRefGoogle Scholar
  16. 16.
    Wong, R.: A dual ascent approach for Steiner tree problems on a directed graph. Math. Program. 28(3), 271–287 (1984)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Zhang, N., Shin, I., Li, B., Boyaci, C., Tiwari, R., Thai, M.: New approximation for minimum-weight routing backbone in wireless sensor network. In: Li, Y., Huynh, D., Das, S., Du, D. (eds.) Proceedings of WASA 2008, Volume 5258 of LNCS, pp. 96–108. Springer, Berlin (2008)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Industrial EngineeringUniversidad de TalcaCuricóChile
  2. 2.Department for Statistics and Operations ResearchUniversity of ViennaViennaAustria
  3. 3.Team INOCSINRIA Lille-Nord EuropeVilleneuve d’AscqFrance

Personalised recommendations