A study on the effect of yield uncertainty in price-setting newsvendor models with additive-multiplicative demand


Random yield and uncertain demand usually both exist in many industries, such as the semiconductor industry. In this paper, the price-setting newsvendor model is studied which involves a single manufacturer and a single retailer with random yield and uncertain demand respectively. Under the condition of additive-multiplicative demand, we investigate the varying effects of random yield on the optimal price, order quantity, and expected profit in two situations with different cost structures. The first case is an in-house production case where the firm pays for the raw material quantity it has ordered, and the second one is a procurement case where the firm pays for the real product quantity it receives only. By using the theory of stochastic comparisons, we find that a less variable and a stochastically larger yield rate both lead to a lower optimal price and a higher expected profit for the in-house production case. Moreover, a less variable yield rate also results in a lower optimal price and a higher profit for the procurement case, but this is not true for a stochastically larger yield rate. Numerical examples illustrate that the effect of yield randomness on the optimal order quantity is not general.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8


  1. 1.

    Tanner, P.: All You Need to Know about the Global Semiconductor Industry, Part 1–9. Market Realist, New York (2015)

    Google Scholar 

  2. 2.

    Wang, C.X.: Random yield and uncertain demand in decentralized supply chains under the traditional and VMI arrangements. Int. J. Prod. Res. 47(7), 1955–1968 (2009)

    Article  MATH  Google Scholar 

  3. 3.

    Han, G.H., Dong, M., Shao, X.F.: Yield management with downward substitution and uncertainty demand in semiconductor manufacturing. Adv. Sci. Lett. 50(3), 743 (2013)

    Google Scholar 

  4. 4.

    Kim, B., Jeong, Y., Tong, S., Chang, I., Jeong, M.: Step-down spatial randomness test for detecting abnormalities in DRAM wafers with multiple spatial maps. IEEE Trans. Semicond. Manuf. 29(1), 57–65 (2016)

    Article  Google Scholar 

  5. 5.

    Atan, Z., Rousseau, M.: Inventory optimization for perishables subject to supply disruptions. Optim. Lett. 10(1), 89–108 (2016)

    MathSciNet  Article  MATH  Google Scholar 

  6. 6.

    Subirana, B., Eckes, C., Herman, G., Sarma, S., Barrett, M.: Measuring the impact of information technology on value and productivity using a process-based approach: the case for RFID technologies. SSRN Electron. J. 223(1), 1–23 (2003)

    Google Scholar 

  7. 7.

    Brown, A.O., Lee, H.L., Petrakian, R.: Xilinx improves its semiconductor supply chain using product and process postponement. Interfaces 30(4), 65–80 (2000)

    Article  Google Scholar 

  8. 8.

    Kumar, A., Tan, Y.: The demand effects of joint product advertising in online videos. Manag. Sci. 61(8), 1921–1937 (2015)

    Article  Google Scholar 

  9. 9.

    Paul, A., Tan, Y., Vakharia, A.: Inventory planning for a modular product family. Prod. Oper. Manag. 24(7), 1033–1053 (2015)

    Article  Google Scholar 

  10. 10.

    Chou, Y.C.H., Cheng, C.T., Yang, F.C., Liang, Y.Y.: Evaluating alternative capacity strategies in semiconductor manufacturing under uncertain demand and price scenarios. Int. J. Prod. Econ. 105(2), 591–606 (2007)

    Article  Google Scholar 

  11. 11.

    Huang, C.H., Song, H.Q.: Modified base-stock policies for semiconductor production system with dependent yield rates. Eur. J. Oper. Res. 207(1), 206–217 (2001)

    MathSciNet  Article  MATH  Google Scholar 

  12. 12.

    Li, Q., Zheng, S.: Joint inventory replenishment and pricing control for systems with uncertain yield and demand. Oper. Res. 54(4), 696–705 (2006)

    Article  MATH  Google Scholar 

  13. 13.

    Zhao, X., Wu, F.W., Cai, R.: Research on coordination of two-stage supply chain under random yield and random demand with contracts. J. Manag. Sci. China 8(1), 23–46 (2014)

    Google Scholar 

  14. 14.

    Turgay, Z., Karaesmen, F., Örmeci, E.L.: A dynamic inventory rationing problem with uncertain demand and production rates. Ann. Oper. Res. 231(1), 207–228 (2015)

    MathSciNet  Article  MATH  Google Scholar 

  15. 15.

    Giri, B.C., Bardhan, S.: Coordinating a supply chain under uncertain demand and random yield in presence of supply disruption. Int. J. Prod. Res. 53(16), 5070–5084 (2015)

    Article  Google Scholar 

  16. 16.

    Tan, Y., Carrillo, J., Cheng, H.K.: The agency model for digital goods. Decis. Sci. 47(4), 628–660 (2016)

    Article  Google Scholar 

  17. 17.

    Tan, Y., Carrillo, J.: Strategic analysis of the agency model for digital goods. Prod. Oper. Manag. 26(4), 724–741 (2017)

    Article  Google Scholar 

  18. 18.

    Mann, H.B., Whitney, D.R.: On a test of whether one of two random variables is stochastically larger than the other. Ann. Math. Stat. 18(1), 50–60 (1947)

    MathSciNet  Article  MATH  Google Scholar 

  19. 19.

    Petruzzi, N.C., Wee, K.E., Dada, M.: The newsvendor model with consumer search costs. Prod. Oper. Manag. 18(6), 693–704 (2009)

    Article  Google Scholar 

  20. 20.

    Xu, M.H., Lu, Y.: The effect of supply uncertainty in price-setting newsvendor model. Eur. J. Oper. Res. 227(3), 423–433 (2013)

    MathSciNet  Article  MATH  Google Scholar 

  21. 21.

    Kochar, S.C., Torrado, N.: On stochastic comparisons of largest order statistics in the scale model. Commun. Stat. Theory Methods 44(19), 4132–4143 (2015)

    MathSciNet  Article  MATH  Google Scholar 

  22. 22.

    Young, L.: Price, inventory and the structure of uncertain demand. N. Z. Oper. 6(1), 157–177 (1978)

    MathSciNet  Google Scholar 

  23. 23.

    Agrawal, V., Seshadri, S.: Impact of uncertainty and risk aversion on price and order quantity in the newsvendor problem. Manuf. Serv. Oper. Manag. 2(4), 410–423 (2000)

    Article  Google Scholar 

  24. 24.

    Mills, E.S.: Uncertainty and price theory. Q. J. Econ. 7(3), 116–130 (1959)

    Article  Google Scholar 

  25. 25.

    Song, Y., Ray, S., Boyaci, T.: Optimal dynamic joint inventory-pricing control for multiplicative demand with fixed order costs and lost sales. Oper. Res. 57(1), 245–250 (2009)

    Article  MATH  Google Scholar 

  26. 26.

    Chen, Y., Xu, M., Zhang, Z.G.: A risk-averse newsvendor model under the CVAR criterion. Oper. Res. 57(4), 1040–1044 (2009)

    Article  MATH  Google Scholar 

  27. 27.

    Shaked, M., Shanthikumar, J.G.: Stochastic Orders, pp. 3–15. Springer, New York (2006)

    Google Scholar 

Download references


This work is supported by the National Natural Science Foundation of China (Nos. 71501058, 71231004, 71601065, 71571058, 71690235, 71690230, 71531008), and Innovative Research Groups of the National Natural Science Foundation of China (71521001), the Humanities and Social Sciences Foundation of the Chinese Ministry of Education (No. 15YJC630097), and Anhui Province Natural Science Foundation (No. 1608085QG167). Panos M. Pardalos is partially supported by the project of “Distinguished International Professor by the Chinese Ministry of Education” (MS2014HFGY026).

Author information



Corresponding author

Correspondence to Wenjuan Fan.

Additional information

This paper is submitted to the special issue OCA6. Dr. Jun Pei registered and attended this conference, and Prof. Panos M. Pardalos attended this conference as a plenary speaker.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yu, L., Fan, W., Pei, J. et al. A study on the effect of yield uncertainty in price-setting newsvendor models with additive-multiplicative demand. Optim Lett 12, 1421–1441 (2018). https://doi.org/10.1007/s11590-017-1215-9

Download citation


  • Random yield
  • Additive-multiplicative demand
  • Newsvendor model
  • Stochastic comparison