Optimization Letters

, Volume 12, Issue 2, pp 235–250 | Cite as

BPPLIB: a library for bin packing and cutting stock problems

  • Maxence Delorme
  • Manuel Iori
  • Silvano MartelloEmail author
Original Paper


The bin packing problem (and its variant, the cutting stock problem) is among the most intensively studied combinatorial optimization problems. We present a library of computer codes, benchmark instances, and pointers to relevant articles for these two problems. The library is available at The computer code section includes twelve programs: seven are directly downloadable from the library page, while for the remaining five we provide addresses where they can be obtained or downloaded. Some of the codes for which we provide an original C++ implementation need an integer linear programming solver. For such cases, the library provides two versions: one that uses the commercial solver CPLEX, and one that uses the freeware solver SCIP. The benchmark section provides over six thousands instances (partly coming from the literature and partly randomly generated), together with the corresponding solutions. Instances that are difficult to solve to proven optimality are included. The library also includes a BibTeX file of more than 150 references on this topic and an interactive visual tool to manually solve bin packing and cutting stock instances. We conclude this work by reporting the results of new computational experiments on a number of computer codes and benchmark instances.


Bin packing Cutting stock Computer codes Benchmark instances Surveys 



Research supported by Air Force Office of Scientific Research (Grant FA9550-17-1-0067) and by MIUR-Italy (Grant PRIN 2015). We thank Gianluca Costa for the development of the BppGame. We thank the reviewers for useful comments.


  1. 1.
    Applegate, D.L., Bixby, R.E., Chvatal, V., Cook, W.J.: The Traveling Salesman Problem—A Computational Study. Princeton University Press, Princeton (2006)zbMATHGoogle Scholar
  2. 2.
    Beasley, J.E.: OR-library: distributing test problems by electronic mail. J. Oper. Res. Soc. 41, 1069–1072 (1990)CrossRefGoogle Scholar
  3. 3.
    Belov, G., Scheithauer, G.: A branch-and-cut-and-price algorithm for one-dimensional stock cutting and two-dimensional two-stage cutting. Eur. J. Oper. Res. 171, 85–106 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Berge, C., Johnson, E.L.: Coloring the edges of a hypergraph and linear programming techniques. Ann. Discrete Math. 1, 65–78 (1977)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Brandão, F., Pedroso, J.P.: Bin packing and related problems: general arc-flow formulation with graph compression. Comput. Oper. Res. 69, 56–67 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Burkard, R.E., Karisch, S.E., Rendl, F.: QAPLIB—a quadratic assignment problem library. Eur. J. Oper. Res. 55, 115–119 (1991)CrossRefzbMATHGoogle Scholar
  7. 7.
    Burkard, R.E., Karisch, S.E., Rendl, F.: QAPLIB—a quadratic assignment problem library. J. Global Optim. 10, 391–403 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Cambazard, H., O’Sullivan, B.: Propagating the bin packing constraint using linear programming. In: Principles and Practice of Constraint Programming—CP 2010, Volume 6308 of Lecture Notes in Computer Science, pp. 129–136. Springer, Berlin (2010)Google Scholar
  9. 9.
    Caprara, A., Dell’Amico, M., Díaz Díaz, J.C., Iori, M., Rizzi, R., Rizzi, R.: Friendly bin packing instances without integer round-up property. Math. Program. 150, 5–17 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Coffman Jr., E.G., Csirik, J., Galambos, G., Martello, S., Vigo, D.: Bin packing approximation algorithms: survey and classification. In: Pardalos, P.M., Du, D.-Z., Graham, R.L. (eds.) Handbook of Combinatorial Optimization. Springer, New York (2013)Google Scholar
  11. 11.
    Coffman Jr., E.G., Garey, M.R., Johnson, D.S.: Approximation algorithms for bin-packing—an updated survey. In: Ausiello, G., Lucentini, M., Serafini, P. (eds.) Algorithm Design for Computer System Design, pp. 49–106. Springer, Vienna (1984)Google Scholar
  12. 12.
    Coffman Jr., E.G., Garey, M.R., Johnson, D.S.: Approximation algorithms for bin packing: a survey. In: Hochbaum, D.S. (ed.) Approximation Algorithms for NP-Hard Problems, pp. 46–93. PWS Publishing Co., Boston (1996)Google Scholar
  13. 13.
    Costa, G., Delorme, M., Iori, M., Malaguti, E., Martello, S.: A training software for orthogonal packing problems. Comput. Ind. Eng. 111, 139–147 (2017)Google Scholar
  14. 14.
    Delorme, M., Iori, M., Martello, S.: Bin packing and cutting stock problems: mathematical models and exact algorithms. Eur. J. Oper. Res. 255, 1–20 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Dyckhoff, H.: A new linear programming approach to the cutting stock problem. Oper. Res. 29, 1092–1104 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Dyckhoff, H.: A typology of cutting and packing problems. Eur. J. Oper. Res. 44, 145–159 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Dyckhoff, H., Finke, U.: Cutting and Packing in Production and Distribution. Physica-Verlag, Heidelberg (1992)CrossRefGoogle Scholar
  18. 18.
    Falkenauer, E.: A hybrid grouping genetic algorithm for bin packing. J. Heuristics 2, 5–30 (1996)CrossRefGoogle Scholar
  19. 19.
    Friberg, H.A.: CBLIB 2014: a benchmark library for conic mixed-integer and continuous optimization. Math. Program. Comput. 8, 191–214 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Garey, M.G., Johnson, D.S.: Computers and Intractability. A Guide to the Theory of NP-Completeness. Freeman, New York (1979)zbMATHGoogle Scholar
  21. 21.
    Garey, M.R., Johnson, D.S.: Approximation algorithms for bin-packing problems: a survey. In: Ausiello, G., Lucertini, M. (eds.) Analysis and Design of Algorithms in Combinatorial Optimization, pp. 147–172. Springer, Vienna (1981)Google Scholar
  22. 22.
    Gau, T., Wäscher, G.: CUTGEN1: a problem generator for the standard one-dimensional cutting stock problem. Eur. J. Oper. Res. 84(3), 572–579 (1995)CrossRefzbMATHGoogle Scholar
  23. 23.
    Groër, C., Golden, B., Wasil, E.: A library of local search heuristics for the vehicle routing problem. Math. Program. Comput. 2, 79–101 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Gschwind, T., Irnich, S.: Dual inequalities for stabilized column generation revisited. INFORMS J. Comput. 28, 175–194 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Koch, T., Achterberg, T., Andersen, E., Bastert, O., Berthold, T., Bixby, R.E., Danna, E., Gamrath, G., Gleixner, A.M., Heinz, S., Lodi, A., Mittelmann, H., Ralphs, T., Salvagnin, D., Steffy, D.E., Wolter, K.: MIPLIB 2010. Math. Program. Comput. 3, 103 (2011)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Lysgaard, J.: CVRPSEP: a package of separation routines for the capacitated vehicle routing problem. Technical Report, Aarhus School of Business (2003)Google Scholar
  27. 27.
    Lysgaard, J., Letchford, A.N., Eglese, R.W.: A new branch-and-cut algorithm for the capacitated vehicle routing problem. Math. Program. 100, 423–445 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Martello, S., Toth, P.: Knapsack Problems: Algorithms and Computer Implementations. Wiley, Chichester (1990).
  29. 29.
    Rao, M.R.: On the cutting stock problem. J. Comput. Soc. India 7, 35–39 (1976)Google Scholar
  30. 30.
    Ryan, D.M., Foster, B.A.: An integer programming approach to scheduling. In: Wren, A. (ed.) Computer Scheduling of Public Transport Urban Passenger Vehicle and Crew Scheduling, pp. 269–280. North-Holland, Amsterdam (1981)Google Scholar
  31. 31.
    Schoenfield, J.E.: Fast, exact solution of open bin packing problems without linear programming. Technical Report, US Army Space and Missile Defense Command, Huntsville (2002)Google Scholar
  32. 32.
    Scholl, A., Klein, R., Jürgens, C.: Bison: a fast hybrid procedure for exactly solving the one-dimensional bin packing problem. Comput. Oper. Res. 24, 627–645 (1997)CrossRefzbMATHGoogle Scholar
  33. 33.
    Schwerin, P., Wäscher, G.: The bin-packing problem: a problem generator and some numerical experiments with FFD packing and MTP. Int. Trans. Oper. Res. 4, 377–389 (1997)CrossRefzbMATHGoogle Scholar
  34. 34.
    Silva, R.M.A., Resende, M.G.C., Pardalos, P.M., Hirsch, M.J.: A python/C library for bound-constrained global optimization with continuous GRASP. Optim. Lett. 7(5), 967–984 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Sweeney, P.E., Paternoster, E.R.: Cutting and packing problems: a categorized, application-orientated research bibliography. J. Oper. Res. Soc. 43, 691–706 (1992)CrossRefzbMATHGoogle Scholar
  36. 36.
    Uchoa, E., Pecin, D., Pessoa, A., Poggi, M., Vidal, T., Subramanian, A.: New benchmark instances for the capacitated vehicle routing problem. Eur. J. Oper. Res. 257, 845–858 (2017)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Valério de Carvalho, J.M.: Exact solution of bin-packing problems using column generation and branch-and-bound. Ann. Oper. Res. 86, 629–659 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Valério de Carvalho, J.M.: LP models for bin packing and cutting stock problems. Eur. J. Oper. Res. 141, 253–273 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Wäscher, G., Gau, T.: Heuristics for the integer one-dimensional cutting stock problem: a computational study. Oper. Res. Spektrum 18, 131–144 (1996)CrossRefzbMATHGoogle Scholar
  40. 40.
    Wäscher, G., Haußner, H., Schumann, H.: An improved typology of cutting and packing problems. Eur. J. Oper. Res. 183, 1109–1130 (2007)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.DEI “Guglielmo Marconi”University of BolognaBolognaItaly
  2. 2.DISMIUniversity of Modena and Reggio EmiliaModenaItaly

Personalised recommendations