Optimization Letters

, Volume 12, Issue 3, pp 639–648 | Cite as

Positive definite and Gram tensor complementarity problems

Original Paper
  • 99 Downloads

Abstract

Given a continuous function Open image in new window and Open image in new window , the non-linear complementarity problem \(\text{ NCP }(g,q)\) is to find a vector Open image in new window such that
$$\begin{aligned} x \ge 0,~~y:=g(x) +q\ge 0~~\text{ and }~~x^Ty=0. \end{aligned}$$
We say that g has the Globally Uniquely Solvable (\(\text{ GUS }\))-property if \(\text{ NCP }(g,q)\) has a unique solution for all Open image in new window and C-property if \(\mathrm{NCP}(g,q)\) has a convex solution set for all Open image in new window . In this paper, we find a class of non-linear functions that have the \(\text{ GUS }\)-property and C-property. These functions are constructed by some special tensors which are positive semidefinite. We call these tensors as Gram tensors.

Keywords

Tensors Positive definite tensors Complementarity problem 

References

  1. 1.
    Bhatia, R.: Positive Definite Matrices. Princeton Series in Applied Mathematics. Princeton University Press, Princeton (2007)Google Scholar
  2. 2.
    Chang, K.C., Pearson, K., Zhang, T.: Perron–Frobenius theorem for nonnegative tensors. Commun. Math. Sci. 6, 507–520 (2008)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Che, M., Qi, L., Wei, Y.: Positive-definite tensors to nonlinear complementarity problems. J. Optim. Theory Appl. 168, 475–487 (2016)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Cottle, R.W., Pang, J.-S., Stone, R.E.: The Linear Complementarity Problem. Academic Press, Boston (1992)MATHGoogle Scholar
  5. 5.
    Ding, W., Qi, L., Wei, Y.: M-tensors and nonsingular M-tensors. Linear Algebra Appl. 439, 3264–3278 (2013)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Ding, W., Luo, Z., Qi, L.: P-Tensors, P\(_0\)-Tensors, and Tensor Complementarity Problem. arXiv:1507.06731 (2015)
  7. 7.
    Facchinei, F., Pang, J.-S.: Finite Dimensional Variational Inequality and Complementarity Problems, vol. I and II. Springer, Berlin (2003)MATHGoogle Scholar
  8. 8.
    Gowda, M.S., Luo, Z., Qi, L., Xiu, N.: Z-tensors and complementarity problems. arXiv:1510.07933 (2015)
  9. 9.
    Harker, P.T., Pang, J.-S.: Finite-dimensional variational inequality and nonlinear complementarity problems: a survey of theory, algorithms and applications. Math. Program. Ser. B 48, 161–220 (1990)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Hu, S., Huang, Z.-H., Ling, C., Qi, L.: On determinants and eigenvalue theory of tensors. J. Symb. Comput. 50, 508–531 (2013)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Karamardian, S.: An existence theorem for the complementarity problem. J. Optim. Theory Appl. 19, 227–232 (1976)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Luo, Z., Qi, L.: Completely positive tensors: properties, easily checkable subclasses, and tractable relaxations. SIAM J. Matrix Anal. Appl. 37, 1675–1698 (2016)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Luo, Z., Qi, L., Xiu, N.: The sparsest solutions to Z-tensor complementarity problems. Optim. Lett. (2015). doi: 10.1007/s11590-016-1013-9
  14. 14.
    Qi, L.: Eigenvalues of a real supersymmetric tensor. J. Symb. Comput. 40, 1302–1324 (2005)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Song, Y., Qi, L.: Tensor complementarity problem and semi-positive tensors. J. Optim. Theory Appl. 169, 1069–1078 (2016)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Department of MathematicsIndian Institute of Technology-MadrasChennaiIndia

Personalised recommendations