Optimization Letters

, Volume 12, Issue 3, pp 455–473 | Cite as

Nesterov’s smoothing technique and minimizing differences of convex functions for hierarchical clustering

  • N. M. Nam
  • W. Geremew
  • S. Reynolds
  • T. Tran
Original Paper


A bilevel hierarchical clustering model is commonly used in designing optimal multicast networks. In this paper, we consider two different formulations of the bilevel hierarchical clustering problem, a discrete optimization problem which can be shown to be NP-hard. Our approach is to reformulate the problem as a continuous optimization problem by making some relaxations on the discreteness conditions. Then Nesterov’s smoothing technique and a numerical algorithm for minimizing differences of convex functions called the DCA are applied to cope with the nonsmoothness and nonconvexity of the problem. Numerical examples are provided to illustrate our method.


DC programming Nesterov’s smoothing technique Hierarchical clustering Subgradient Fenchel conjugate 



N. M. Nam: Research of this author was partly supported by the National Science Foundation under Grant #1411817.


  1. 1.
    An, L.T.H., Belghiti, M.T., Tao, P.D.: A new efficient algorithm based on DC programming and DCA for clustering. J. Glob. Optim. 27, 503–608 (2007)MathSciNetzbMATHGoogle Scholar
  2. 2.
    An, L.T.H., Minh, L.H.: Optimization based DC programming and DCA for hierarchical clustering. Eur. J. Oper. Res. 183, 1067–1085 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    An, L.T.H., Tao, P.D.: Convex analysis approach to D.C. programming: theory, algorithms and applications. Acta Math. Vietnam. 22, 289–355 (1997)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Bagirov, A.: Derivative-free methods for unconstrained nonsmooth optimization and its numerical analysis. Investig. Oper. 19, 75–93 (1999)Google Scholar
  5. 5.
    Bagirov, A., Jia, L., Ouveysi, I., Rubinov, A.M.: Optimization based clustering algorithms in multicast group hierarchies. In: Proceedings of the Australian Telecommunications, Networks and Applications Conference (ATNAC), Melbourne, Australia (published on CD, ISNB 0-646-42229-4) (2003)Google Scholar
  6. 6.
    Bagirov, A., Taheri, S., Ugon, J.: Nonsmooth DC programming approach to the minimum sum-of-squares clustering problems. Pattern Recognit. 53, 12–24 (2016)CrossRefGoogle Scholar
  7. 7.
    Hartman, P.: On functions representable as a difference of convex functions. Pac. J. Math. 9, 707–713 (1959)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Nam, N.M., Rector, R.B., Giles, D.: Minimizing differences of convex functions with applications to facility location and clustering. J. Optim. Theory Appl. 173, 255–278 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Nesterov, Y.: Gradient methods for minimizing composite functions. Math. Program. 140, 125–161 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Nesterov, Y.: Smooth minimization of non-smooth functions. Math. Program. 103, 127–152 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Ordin, B., Bagirov, A.: A heuristic algorithm for solving the minimum sum-of-squares clustering problems. J. Glob. Optim. 61, 341–361 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Reinelt, G.: TSPLIB: a traveling salesman problem library. ORSA J. Comput. 3, 376–384 (1991)CrossRefzbMATHGoogle Scholar
  13. 13.
    Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970)CrossRefzbMATHGoogle Scholar
  14. 14.
    Rockafellar, R.T.: Conjugate Duality and Optimization. SIAM, Philadelphia (1974)CrossRefzbMATHGoogle Scholar
  15. 15.
    Tao, P.D., An, L.T.H.: A d.c. optimization algorithm for solving the trust-region subproblem. SIAM J. Optim. 8, 476–505 (1998)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Fariborz Maseeh Department of Mathematics and StatisticsPortland State UniversityPortlandUSA
  2. 2.School of General StudiesStockton UniversityGallowayUSA

Personalised recommendations