Arima, N., Kim, S., Kojima, M.: A quadratically constrained quadratic optimization model for completely positive cone programming. SIAM J. Optim. 23, 2320–2340 (2013)
MathSciNet
Article
MATH
Google Scholar
Arima, N., Kim, S., Kojima, M.: Extension of completely positive cone relaxation to moment cone relaxation for polynomial optimization. J. Optim. Theory Appl. 168(3), 1–17 (2016)
Bai, L., Mitchell, J.E., Pang, J.: On conic qpccs, conic qcqps and completely positive programs. Math. Program. 159(1–2), 1–28 (2016)
Bomze, I.M.: Copositive optimization-recent developments and applications. Eur. J. Oper. Res. 216, 509–520 (2012)
MathSciNet
Article
MATH
Google Scholar
Bomze, I.M., Schachinger, W., Uchida, G.: Think co (mpletely) positive! matrix properties, examples and a clustered bibliography on copositive optimization. J. Glob. Optim. 52, 423–445 (2012)
MathSciNet
Article
MATH
Google Scholar
Burer, S.: On the copositive representation of binary and continuous nonconvex quadratic programs. Math. Program. 120, 479–495 (2009)
MathSciNet
Article
MATH
Google Scholar
Burer, S.: Copositive programming. In: Anjos, M.F., Lasserre, J.B. (eds.) Handbook on Semidefinite, Conic and Polynomial Optimization, pp. 201–218. Springer, New York (2012)
Burer, S., Dong, H.: Representing quadratically constrained quadratic programs as generalized copositive programs. Oper. Res. Lett. 40, 203–206 (2012)
MathSciNet
Article
MATH
Google Scholar
Chen, B., He, S., Li, Z., Zhang, S.: Maximum block improvement and polynomial optimization. SIAM J. Optim. 22, 87–107 (2012)
MathSciNet
Article
MATH
Google Scholar
Dong, H.: Symmetric tensor approximation hierarchies for the completely positive cone. SIAM J. Optim. 23, 1850–1866 (2013)
MathSciNet
Article
MATH
Google Scholar
Dür, M.: Copositive programming–a survey. In: Diehl, M., Glineur, F., Jarlebring, E., Michiels, W. (eds.) Recent Advances in Optimization and its Applications in Engineering, pp. 3–20. Springer, Berlin, Heidelberg (2010)
Lasserre, J.B.: Global optimization with polynomials and the problem of moments. SIAM J. Optim. 11, 796–817 (2001)
MathSciNet
Article
MATH
Google Scholar
Lasserre, J.B.: Moments and sums of squares for polynomial optimization and related problems. J. Glob. Optim. 45, 39–61 (2009a)
MathSciNet
Article
MATH
Google Scholar
Lasserre, J.B.: Moments, Positive Polynomials and Their Applications, vol. 1. World Scientific, Singapore (2009b)
Google Scholar
Laurent, M.: Sums of squares, moment matrices and optimization over polynomials. In: Putinar, M., Sullivant, S. (eds.) Emerging Applications of Algebraic Geometry, pp. 157–270. Springer, Berlin (2009)
Luo, Z., Qi, L., Ye, Y.: Linear operators and positive semidefiniteness of symmetric tensor spaces. Sci. China Math. 58, 197–212 (2015)
MathSciNet
Article
MATH
Google Scholar
Pardalos, P.M., Vavasis, S.A.: Quadratic programming with one negative eigenvalue is np-hard. J. Glob. Optim. 1, 15–22 (1991)
MathSciNet
Article
MATH
Google Scholar
Peña, J., Vera, J., Zuluaga, L.F.: Completely positive reformulations for polynomial optimization. Math. Program. 151, 405–431 (2015)
MathSciNet
Article
MATH
Google Scholar
Qi, L., Xu, C., Xu, Y.: Nonnegative tensor factorization, completely positive tensors, and a hierarchical elimination algorithm. SIAM J. Matrix Anal. Appl. 35, 1227–1241 (2014)
MathSciNet
Article
MATH
Google Scholar
Rockafellar, R.T., Wets, R.J.-B.: Variational Analysis, vol. 317. Springer, Berlin (2009)
MATH
Google Scholar