Single-machine serial-batching scheduling with a machine availability constraint, position-dependent processing time, and time-dependent set-up time

Abstract

This article considers the single-machine serial-batching scheduling problem with a machine availability constraint, position-dependent processing time, and time-dependent set-up time. The objective of this problem is to make the decision of batching jobs and sequencing batches to minimize the makespan. To solve the problem, three cases of machine non-availability periods are considered, and the structural properties of the optimal solution are derived for each case. Based on these structural properties, an optimization algorithm is developed and an example is proposed to illustrate this algorithm.

This is a preview of subscription content, log in to check access.

Fig. 1

References

  1. 1.

    Biskup, D.: Single-machine scheduling with learning considerations. Eur. J. Oper. Res. 115(1), 173–178 (1999)

    MathSciNet  Article  MATH  Google Scholar 

  2. 2.

    Wright, T.P.: Factors affecting the cost of airplanes. J. Aeronaut. Sci. 3, 122–128 (1936)

    Article  Google Scholar 

  3. 3.

    Cheng, T.C.E., Wang, G.: Single machine scheduling with learning effect considerations. Ann. Oper. Res. 98(1), 273–290 (2000)

    MathSciNet  Article  MATH  Google Scholar 

  4. 4.

    Wang, J.-B., Wang, J.-J.: Single machine scheduling with sum-of-logarithm-processing-times based and position based learning effects. Optim. Lett. 8(3), 971–982 (2012)

    MathSciNet  Article  MATH  Google Scholar 

  5. 5.

    Lee, W.-C.: Single-machine scheduling with past-sequence-dependent setup times and general effects of deterioration and learning. Optim. Lett. 8(1), 135–144 (2014)

    MathSciNet  Article  MATH  Google Scholar 

  6. 6.

    Cheng, T.C.E., Kuo, W.-H., Yang, D.-L.: Scheduling with a position-weighted learning effect. Optim. Lett. 8(1), 293–306 (2014)

    MathSciNet  Article  MATH  Google Scholar 

  7. 7.

    Wang, J.-B., Wang, J.-J.: Flowshop scheduling with a general exponential learning effect. Comput. Oper. Res. 43, 292–308 (2014)

    MathSciNet  Article  MATH  Google Scholar 

  8. 8.

    Luo, K., Zhang, X.: A simple proof technique for scheduling models with learning effects. Optim. Lett. 9(7), 1411–1420 (2015)

    MathSciNet  Article  MATH  Google Scholar 

  9. 9.

    Li, G., Luo, M.-L., Zhang, W.-J., Wang, X.-Y.: Single-machine due-window assignment scheduling based on common flow allowance, learning effect and resource allocation. Int. J. Prod. Res. 53(4), 1228–1241 (2015)

    Article  Google Scholar 

  10. 10.

    Lee, C.Y.: Machine scheduling with an availability constraint. J. Global Optim. 9(3), 395–416 (1996)

    MathSciNet  Article  MATH  Google Scholar 

  11. 11.

    Lee, C.Y.: Two-machine flowshop scheduling with availability constraints. Eur. J. Oper. Res. 114(2), 420–429 (1999)

    MathSciNet  Article  MATH  Google Scholar 

  12. 12.

    Zhong, X., Ou, J., Wang, G.: Order acceptance and scheduling with machine availability constraints. Eur. J. Oper. Res. 232(3), 435–441 (2014)

    MathSciNet  Article  MATH  Google Scholar 

  13. 13.

    Kacem, I., Kellerer, H., Lanuel, Y.: Approximation algorithms for maximizing the weighted number of early jobs on a single machine with non-availability intervals. J. Comb. Optim. 30(3), 403–412 (2015)

    MathSciNet  Article  MATH  Google Scholar 

  14. 14.

    Mor, B., Mosheiov, G.: Heuristics for scheduling problems with an unavailability constraint and position-dependent processing times. Comput. Ind. Eng. 62(4), 908–916 (2012)

    Article  Google Scholar 

  15. 15.

    Wu, C.-C., Lee, W.-C.: A note on single-machine scheduling with learning effect and an availability constraint. Int. J. Adv. Manuf. Technol. 33(5), 540–544 (2007)

    Article  Google Scholar 

  16. 16.

    Yang, D.-L., Kuo, W.-H.: A single-machine scheduling problem with learning effects in intermittent batch production. Comput. Ind. Eng. 57(3), 762–765 (2009)

    Article  Google Scholar 

  17. 17.

    Li, S.S., Ng, C.T., Cheng, T.C.E., Yuan, J.J.: Parallel-batch scheduling of deteriorating jobs with release dates to minimize the makespan. Eur. J. Oper. Res. 210(3), 482–488 (2011)

    MathSciNet  Article  MATH  Google Scholar 

  18. 18.

    Pei, J., Pardalos, P.M., Liu, X., Fan, W., Yang, S.: Serial batching scheduling of deteriorating jobs in a two-stage supply chain to minimize the makespan. Eur. J. Oper. Res. 244(1), 13–25 (2015)

    MathSciNet  Article  MATH  Google Scholar 

  19. 19.

    Pei, J., Liu, X., Pardalos, P.M., Fan, W., Yang, S.: Scheduling deteriorating jobs on a single serial-batching machine with multiple job types and sequence-dependent setup times. Ann. Oper. Res. (2015). doi:10.1007/s10479-015-1824-6

  20. 20.

    Pei, J., Liu, X., Pardalos, P.M., Migdalas, A., Yang, S.: Serial-batching scheduling with time-dependent setup time and effects of deterioration and learning on a single-machine. J. Glob. Optim. (2015). doi:10.1007/s10898-015-0320-5

  21. 21.

    Yang, S.J.: Group scheduling problems with simultaneous considerations of learning and deterioration effects on a single-machine. Appl. Math. Model. 35(8), 4008–4016 (2011)

    MathSciNet  Article  MATH  Google Scholar 

  22. 22.

    Bai, J., Li, Z.R., Huang, X.: Single-machine group scheduling with general deterioration and learning effects. Appl. Math. Model. 36(3), 1267–1274 (2012)

    MathSciNet  Article  MATH  Google Scholar 

  23. 23.

    Huang, X., Wang, M.Z., Wang, J.B.: Single-machine group scheduling with both learning effects and deteriorating jobs. Comput. Ind. Eng. 60(4), 750–754 (2011)

    Article  Google Scholar 

  24. 24.

    Pei, J., Liu, X., Pardalos, P.M., Fan, W., Yang, S.: Single machine serial-batching scheduling with independent setup time and deteriorating job processing times. Optim. Lett. 9(1), 91–104 (2015)

    MathSciNet  Article  MATH  Google Scholar 

  25. 25.

    Wang, J.-B., Xia, Z.-Q.: Flow-shop scheduling with a learning effect. J. Oper. Res. Soc. 56(11), 1325–1330 (2005)

    Article  MATH  Google Scholar 

  26. 26.

    Xuan, H., Tang, L.X.: Scheduling a hybrid flowshop with batch production at the last stage. Comput. Oper. Res. 34(9), 2718–2733 (2007)

    Article  MATH  Google Scholar 

  27. 27.

    Cheng, T.C.E., Hsu, C.-J., Huang, Y.-C., Lee, W.-C.: Single-machine scheduling with deteriorating jobs and setup times to minimize the maximum tardiness. Comput. Oper. Res. 38(12), 1760–1765 (2011)

    MathSciNet  Article  MATH  Google Scholar 

  28. 28.

    Wu, C.-C., Lee, W.-C.: Scheduling linear deteriorating jobs to minimize makespan with an availability constraint on a single machine. Inform. Process. Lett. 87(2), 89–93 (2003)

    MathSciNet  Article  MATH  Google Scholar 

  29. 29.

    Gawiejnowicz, S., Kononov, A.: Complexity and approximability of scheduling resumable proportionally deteriorating jobs. Eur. J. Oper. Res. 200(1), 305–308 (2010)

    Article  MATH  Google Scholar 

  30. 30.

    Graham, R.L., Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G.: Optimization and approximation in deterministic sequencing and scheduling: a survey. Ann. Discrete Math. 5, 287–326 (1979)

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (Nos. 71601065, 71231004, 71501058, 71131002, 71471052, 71521001, 71571058), the Humanities and Social Sciences Foundation of the Chinese Ministry of Education (No. 15YJC630097), Anhui Province Natural Science Foundation (No. 1608085QG167), and the Fundamental Research Funds for the Central Universities (Nos. JZ2016HGTA0709, JZ2016HGTB0727). Panos M. Pardalos is partially supported by the project of “Distinguished International Professor by the Chinese Ministry of Education” (MS2014HFGY026).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jun Pei.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pei, J., Liu, X., Pardalos, P.M. et al. Single-machine serial-batching scheduling with a machine availability constraint, position-dependent processing time, and time-dependent set-up time. Optim Lett 11, 1257–1271 (2017). https://doi.org/10.1007/s11590-016-1074-9

Download citation

Keywords

  • Scheduling
  • Availability constraint
  • Serial-batching
  • Single-machine
  • Position-dependent processing time