Advertisement

Optimization Letters

, Volume 11, Issue 7, pp 1257–1271 | Cite as

Single-machine serial-batching scheduling with a machine availability constraint, position-dependent processing time, and time-dependent set-up time

  • Jun Pei
  • Xinbao Liu
  • Panos M. Pardalos
  • Kai Li
  • Wenjuan Fan
  • Athanasios Migdalas
Original Paper

Abstract

This article considers the single-machine serial-batching scheduling problem with a machine availability constraint, position-dependent processing time, and time-dependent set-up time. The objective of this problem is to make the decision of batching jobs and sequencing batches to minimize the makespan. To solve the problem, three cases of machine non-availability periods are considered, and the structural properties of the optimal solution are derived for each case. Based on these structural properties, an optimization algorithm is developed and an example is proposed to illustrate this algorithm.

Keywords

Scheduling Availability constraint Serial-batching Single-machine Position-dependent processing time 

Notes

Acknowledgments

This work is supported by the National Natural Science Foundation of China (Nos. 71601065, 71231004, 71501058, 71131002, 71471052, 71521001, 71571058), the Humanities and Social Sciences Foundation of the Chinese Ministry of Education (No. 15YJC630097), Anhui Province Natural Science Foundation (No. 1608085QG167), and the Fundamental Research Funds for the Central Universities (Nos. JZ2016HGTA0709, JZ2016HGTB0727). Panos M. Pardalos is partially supported by the project of “Distinguished International Professor by the Chinese Ministry of Education” (MS2014HFGY026).

References

  1. 1.
    Biskup, D.: Single-machine scheduling with learning considerations. Eur. J. Oper. Res. 115(1), 173–178 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Wright, T.P.: Factors affecting the cost of airplanes. J. Aeronaut. Sci. 3, 122–128 (1936)CrossRefGoogle Scholar
  3. 3.
    Cheng, T.C.E., Wang, G.: Single machine scheduling with learning effect considerations. Ann. Oper. Res. 98(1), 273–290 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Wang, J.-B., Wang, J.-J.: Single machine scheduling with sum-of-logarithm-processing-times based and position based learning effects. Optim. Lett. 8(3), 971–982 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Lee, W.-C.: Single-machine scheduling with past-sequence-dependent setup times and general effects of deterioration and learning. Optim. Lett. 8(1), 135–144 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Cheng, T.C.E., Kuo, W.-H., Yang, D.-L.: Scheduling with a position-weighted learning effect. Optim. Lett. 8(1), 293–306 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Wang, J.-B., Wang, J.-J.: Flowshop scheduling with a general exponential learning effect. Comput. Oper. Res. 43, 292–308 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Luo, K., Zhang, X.: A simple proof technique for scheduling models with learning effects. Optim. Lett. 9(7), 1411–1420 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Li, G., Luo, M.-L., Zhang, W.-J., Wang, X.-Y.: Single-machine due-window assignment scheduling based on common flow allowance, learning effect and resource allocation. Int. J. Prod. Res. 53(4), 1228–1241 (2015)CrossRefGoogle Scholar
  10. 10.
    Lee, C.Y.: Machine scheduling with an availability constraint. J. Global Optim. 9(3), 395–416 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Lee, C.Y.: Two-machine flowshop scheduling with availability constraints. Eur. J. Oper. Res. 114(2), 420–429 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Zhong, X., Ou, J., Wang, G.: Order acceptance and scheduling with machine availability constraints. Eur. J. Oper. Res. 232(3), 435–441 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Kacem, I., Kellerer, H., Lanuel, Y.: Approximation algorithms for maximizing the weighted number of early jobs on a single machine with non-availability intervals. J. Comb. Optim. 30(3), 403–412 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Mor, B., Mosheiov, G.: Heuristics for scheduling problems with an unavailability constraint and position-dependent processing times. Comput. Ind. Eng. 62(4), 908–916 (2012)CrossRefGoogle Scholar
  15. 15.
    Wu, C.-C., Lee, W.-C.: A note on single-machine scheduling with learning effect and an availability constraint. Int. J. Adv. Manuf. Technol. 33(5), 540–544 (2007)CrossRefGoogle Scholar
  16. 16.
    Yang, D.-L., Kuo, W.-H.: A single-machine scheduling problem with learning effects in intermittent batch production. Comput. Ind. Eng. 57(3), 762–765 (2009)CrossRefGoogle Scholar
  17. 17.
    Li, S.S., Ng, C.T., Cheng, T.C.E., Yuan, J.J.: Parallel-batch scheduling of deteriorating jobs with release dates to minimize the makespan. Eur. J. Oper. Res. 210(3), 482–488 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Pei, J., Pardalos, P.M., Liu, X., Fan, W., Yang, S.: Serial batching scheduling of deteriorating jobs in a two-stage supply chain to minimize the makespan. Eur. J. Oper. Res. 244(1), 13–25 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Pei, J., Liu, X., Pardalos, P.M., Fan, W., Yang, S.: Scheduling deteriorating jobs on a single serial-batching machine with multiple job types and sequence-dependent setup times. Ann. Oper. Res. (2015). doi: 10.1007/s10479-015-1824-6
  20. 20.
    Pei, J., Liu, X., Pardalos, P.M., Migdalas, A., Yang, S.: Serial-batching scheduling with time-dependent setup time and effects of deterioration and learning on a single-machine. J. Glob. Optim. (2015). doi: 10.1007/s10898-015-0320-5
  21. 21.
    Yang, S.J.: Group scheduling problems with simultaneous considerations of learning and deterioration effects on a single-machine. Appl. Math. Model. 35(8), 4008–4016 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Bai, J., Li, Z.R., Huang, X.: Single-machine group scheduling with general deterioration and learning effects. Appl. Math. Model. 36(3), 1267–1274 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Huang, X., Wang, M.Z., Wang, J.B.: Single-machine group scheduling with both learning effects and deteriorating jobs. Comput. Ind. Eng. 60(4), 750–754 (2011)CrossRefGoogle Scholar
  24. 24.
    Pei, J., Liu, X., Pardalos, P.M., Fan, W., Yang, S.: Single machine serial-batching scheduling with independent setup time and deteriorating job processing times. Optim. Lett. 9(1), 91–104 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Wang, J.-B., Xia, Z.-Q.: Flow-shop scheduling with a learning effect. J. Oper. Res. Soc. 56(11), 1325–1330 (2005)CrossRefzbMATHGoogle Scholar
  26. 26.
    Xuan, H., Tang, L.X.: Scheduling a hybrid flowshop with batch production at the last stage. Comput. Oper. Res. 34(9), 2718–2733 (2007)CrossRefzbMATHGoogle Scholar
  27. 27.
    Cheng, T.C.E., Hsu, C.-J., Huang, Y.-C., Lee, W.-C.: Single-machine scheduling with deteriorating jobs and setup times to minimize the maximum tardiness. Comput. Oper. Res. 38(12), 1760–1765 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Wu, C.-C., Lee, W.-C.: Scheduling linear deteriorating jobs to minimize makespan with an availability constraint on a single machine. Inform. Process. Lett. 87(2), 89–93 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Gawiejnowicz, S., Kononov, A.: Complexity and approximability of scheduling resumable proportionally deteriorating jobs. Eur. J. Oper. Res. 200(1), 305–308 (2010)CrossRefzbMATHGoogle Scholar
  30. 30.
    Graham, R.L., Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G.: Optimization and approximation in deterministic sequencing and scheduling: a survey. Ann. Discrete Math. 5, 287–326 (1979)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Jun Pei
    • 1
    • 2
  • Xinbao Liu
    • 1
    • 3
  • Panos M. Pardalos
    • 2
  • Kai Li
    • 1
    • 3
  • Wenjuan Fan
    • 1
    • 3
  • Athanasios Migdalas
    • 4
    • 5
  1. 1.School of ManagementHefei University of TechnologyHefeiChina
  2. 2.Department of Industrial and Systems Engineering, Center for Applied OptimizationUniversity of FloridaGainesvilleUSA
  3. 3.Key Laboratory of Process Optimization and Intelligent Decision-making of Ministry of EducationHefeiChina
  4. 4.Division of Industrial Logistics, Department of Industrial EngineeringLulea University of TechnologyLuleåSweden
  5. 5.Division of Transportation, Construction Management and Regional Planning, Department of Civil EngineeringAristotle University of ThessalonikiThessalonikiGreece

Personalised recommendations