An improved two-stage optimization-based framework for unequal-areas facility layout

Abstract

The unequal-areas facility layout problem is concerned with finding the optimal arrangement of a given number of non-overlapping indivisible departments with unequal area requirements within a facility. We present an improved optimization-based framework for efficiently finding competitive solutions for this problem. The framework is based on the combination of two mathematical optimization models. The first model is a nonlinear approximation of the problem that establishes the relative position of the departments within the facility, and the second model is an exact convex optimization formulation of the problem that determines the final layout. Aspect ratio constraints on the departments are taken into account by both models. Our computational results show that the proposed framework is computationally efficient and consistently produces competitive, and often improved, layouts for well-known instances from the literature as well as for new large-scale instances with up to 100 departments.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Armour, G.C., Buffa, E.S.: A Heuristic algorithm and simulation approach to relative location of facilities. Manag. Sci. 9, 294–309 (1963)

    Article  Google Scholar 

  2. 2.

    Anjos, M.F., Vannelli, A.: An attractor-repeller approach to floor planning. Math. Methods Oper. Res. 56(1), 3–27 (2002)

    MathSciNet  Article  MATH  Google Scholar 

  3. 3.

    Anjos, M.F., Vannelli, A.: A new mathematical-programming framework for facility-layout design. INFORMS J. Comput. 18(1), 111–118 (2006)

    MathSciNet  Article  MATH  Google Scholar 

  4. 4.

    Bazaraa, M.S.: Computerized layout design: a branch and bound approach. AIIE Trans. 7(4), 432–438 (1975)

    MathSciNet  Article  Google Scholar 

  5. 5.

    Bernardi, S., Anjos, M.F.: A two-stage mathematical-programming method for the multi-floor facility layout problem. J. Oper. Res. Soc. 64, 352–364 (2013)

    Article  Google Scholar 

  6. 6.

    Bozer, Y.A., Meller, R.D.: A reexamination of the distance-based facility layout problem. IIE Trans. 29(7), 549–560 (1997)

    Google Scholar 

  7. 7.

    Bozer, Y.A., Wang, C.-T.: A graph-pair representation and MIP-model-based heuristic for the unequal-area facility layout problem. Eur. J. Oper. Res. 218, 382–391 (2012)

    MathSciNet  Article  MATH  Google Scholar 

  8. 8.

    Brimberg, J., Juel, H., Körner, M.C., Schöbel, A.: Locating an axis-parallel rectangle on a Manhattan plane. TOP 22, 185–207 (2014)

    MathSciNet  Article  MATH  Google Scholar 

  9. 9.

    Castillo, I., Westerlund, T.: An \(\varepsilon \)-accurate model for optimal unequal-area block layout design. Comput. Oper. Res. 32(3), 429–447 (2005)

    Article  MATH  Google Scholar 

  10. 10.

    Castillo, I., Westerlund, J., Emet, S., Westerlund, T.: Optimization of block layout design problems with unequal areas: a comparison of MILP and MINLP optimization methods. Comput. Chem. Eng. 30(1), 54–69 (2005)

    Article  Google Scholar 

  11. 11.

    Etawil, H., Areibi, S., Vannelli, A.: Attractor-repeller approach for global placement. In: Proceedings of the 1999 IEEE/ACM International Conference on Computer-Aided Design, pp. 20–24 (1999)

  12. 12.

    Foulds, L.R.: Graph Theory Applications. Springer-Verlag, New York (1991)

    Google Scholar 

  13. 13.

    Gau, K.Y., Meller, R.D.: An iterative facility layout algorithm. Int. J. Prod. Res. 37(16), 3739–3758 (1999)

    Article  MATH  Google Scholar 

  14. 14.

    Jankovits, I., Luo, C., Anjos, M.F., Vannelli, A.: A convex optimisation framework for the unequal-areas facility layout problem. Eur. J. Oper. Res. 214, 199–215 (2011)

    MathSciNet  Article  MATH  Google Scholar 

  15. 15.

    Kalcsics, J.: Districting problems. In: Laporte, G., Nickel, S., Saldanha da Gama, F. (eds.) Location Science. Springer International Publishing, Switzerland (2015)

    Google Scholar 

  16. 16.

    Kim, J.G., Kim, Y.D.: A space partitioning method for facility layout problems with shape constraints. IIE Trans. 30(10), 947–957 (1998)

    Google Scholar 

  17. 17.

    Kochhar, J.S., Foster, B.T., Heragu, S.S.: Hope: a genetic algorithm for the unequal area facility layout problem. Comput. Oper. Res. 25, 583–594 (1998)

    Article  MATH  Google Scholar 

  18. 18.

    Kulturel-Konak, S., Konak, A.: Linear programming based genetic algorithm for the unequal area facility layout problem. Int. J. Prod. Res. 51(14), 4302–4324 (2013)

    Article  MATH  Google Scholar 

  19. 19.

    Luo, C., Anjos, M.F., Vannelli, A.: A nonlinear optimization methodology for VLSI fixed-outline floorplanning. J. Comb. Optim. 16(4), 378–401 (2008)

    MathSciNet  Article  MATH  Google Scholar 

  20. 20.

    Liu, Q., Meller, R.D.: A sequence-pair representation and MIP-model-based heuristic for the facility layout problem with rectangular departments. IIE Trans. 39(4), 377–394 (2007)

    Article  Google Scholar 

  21. 21.

    Mavridou, T.D., Pardalos, P.M.: Simulated annealing and genetic algorithms for the facility layout problem: a survey. Comput. Optim. Appl. 7(1), 111–126 (1997)

    MathSciNet  Article  MATH  Google Scholar 

  22. 22.

    Meller, R.D., Chen, W., Sherali, H.D.: Applying the sequence-pair representation to optimal facility layout designs. Oper. Res. Lett. 35(5), 651–659 (2007)

    MathSciNet  Article  MATH  Google Scholar 

  23. 23.

    Meller, R.D., Narayanan, V., Vance, P.H.: Optimal facility layout design. Oper. Res. Lett. 23, 117–127 (1999)

    MathSciNet  Article  MATH  Google Scholar 

  24. 24.

    Montreuil, B.: A modeling framework for integrating layout design and flow network design. In: Proceedings of the material handling research colloquium, pp. 43–58 (1990)

  25. 25.

    Nugent, C.E., Vollmann, T.E., Ruml, J.: An experimental comparison of techniques for the assignment of facilities to locations. Oper. Res. 16(1), 150–173 (1968)

    Article  Google Scholar 

  26. 26.

    Sherali, H.D., Fraticelli, B.M.P., Meller, R.D.: Enhanced model formulation for optimal facility layout. Oper. Res. 51(4), 629–644 (2003)

    MathSciNet  Article  MATH  Google Scholar 

  27. 27.

    Singh, S.P., Sharma, R.R.K.: A review of different approaches to the facility layout problems. Int. J. Adv. Manuf. Technol. 30(5–6), 425–433 (2006)

    Article  Google Scholar 

  28. 28.

    Tam, K.Y.: Genetic algorithms, function optimization, and facility layout design. Eur. J. Oper. Res. 63, 322–346 (1992)

    Article  MATH  Google Scholar 

  29. 29.

    van Camp, D.J., Carter, M.W., Vannelli, A.: A nonlinear optimization approach for solving facility layout problems. Eur. J. Oper. Res. 57, 174–189 (1991)

    Article  MATH  Google Scholar 

  30. 30.

    Xie, W., Sahinidis, N.V.: A branch-and-bound-algorithm for the continuous facility layout problem. Comput. Chem. Eng. 32, 1016–1028 (2008)

    Article  Google Scholar 

Download references

Acknowledgments

The first author’s research was partially supported by a Discovery Grant from the Natural Sciences and Engineering Research Council of Canada. The second author’s research was partially supported by the Fundação para a Ciência e a Tecnologia (Portuguese Foundation for Science and Technology) through the project PEstOE/MAT/UI0297/2014 (Centro de Matemática e Aplicações).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Miguel F. Anjos.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Anjos, M.F., Vieira, M.V.C. An improved two-stage optimization-based framework for unequal-areas facility layout. Optim Lett 10, 1379–1392 (2016). https://doi.org/10.1007/s11590-016-1008-6

Download citation

Keywords

  • Facility layout
  • Nonlinear optimization