Skip to main content
Log in

Projected shrinkage algorithm for box-constrained \(\ell _1\)-minimization

  • Original Paper
  • Published:
Optimization Letters Aims and scope Submit manuscript

Abstract

Box-constrained \(\ell _1\)-minimization in some cases performs remarkably better than the classical \(\ell _1\)-minimization when appropriate box constraints are available. And also many practical \(\ell _1\)-minimization models indeed involve box constraints. In this paper, we propose an efficient iteration scheme, dubbed the projected shrinkage (ProShrink) algorithm, to solve a class of box-constrained \(\ell _1\)-minimization problems. A key component in our technique is that the proximal point operator of \(\ell _1\)-norm with box constraints can be equivalently simplified into a projected shrinkage operator which can be calculated directly. Theoretically, we prove that ProShrink enjoys convergence of both the primal and dual point sequences. On the numerical level, we demonstrate the benefit of adding box constraints via sparse recovery experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. Let \(\hat{x}\) be a sparse vector to be recovered and assume that its i-th entry \(\hat{x}_i\) is nonzero. Then, we say that \([-|\hat{x}_i|,|\hat{x}_i|]\) is a correct box constraint, also called right size box.

References

  1. Bauschke, H.H., Combettes, P.L.: Convex Analysis and Monotone Operator theory in Hilbert Spaces. Springer, Berlin (2011)

    Book  MATH  Google Scholar 

  2. Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci. 2(1), 183–202 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bruckstein, A.M., Elad, M., Zibulevsky, M.: On the uniqueness of nonnegative sparse solutions to underdetermined systems of equations. IEEE Trans. Inf Theory 54(11), 4813–4820 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cai, J.-F., Osher, S., Shen, Z.: Linearized Bregman iterations for compressed sensing. Math. Comput. 78(267), 1515–1536 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen, S., Donoho, D., Saunders, M.: Atomic decomposition by basis pursuit. SIAM Rev. 43(1), 129–159 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  6. Combettes, P.L., Wajs, V.R.: Signal recovery by proximal forward–backward splitting. Multiscale Model. Simul. 4(4), 1168–1200 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Donoho, D.L., Tanner, J.: Sparse nonnegative solution of underdetermined linear equations by linear programming. Proc. Natl. Acad. Sci. 102(27), 9446–9451 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. Güler, O.: On the convergence of the proximal point algorithm for convex minimization. SIAM J. Control Optim. 29(2), 403–419 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  9. Lai, M.J., Yin, W.: Augmented \(\ell _1\) and nuclear-norm models with a globally linearly convergent algorithm. SIAM. J. Imaging Sci. 6(2), 1059–1091 (2013)

    Article  MATH  Google Scholar 

  10. Moreau, J.J.: Fonctions convexes duales et points proximaux dans un espace hilbertien. C. R. Acad. Sci. Paris Ser. A Math. 255, 2897–2899 (1962)

    MathSciNet  MATH  Google Scholar 

  11. Nesterov, Y.: Introductory Lectures on Convex Optimization: A Basic Course. Kluwer Academic Publishers, Berlin (2004)

    Book  MATH  Google Scholar 

  12. O’Donoghue, B., Candès, E.: Adaptive restart for accelerated gradient schemes. Found. Comput. Math. 15(3), 715–732 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  13. Parikh, N., Boyd, S.: Proximal algorithm. Found. Trends Optim. 1(3), 123–231 (2014)

  14. Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970)

  15. Rockafellar, R.T.: Monotone operators and the proximal point algorithm. SlAM J. Control Optim. 14(5), 877–898 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  16. Takác̆, M., Marec̆ek, J., Richtárik, P.: Inequality-Constrained Matrix Completion: Adding the Obvious Helps! arXiv:1408.2467v1 [math.OC] (2014)

  17. Vaswani, N., Lu, W.: Modified-CS: modifying compressive sensing for problems with partially known support. IEEE Trans. Signal Process. 58(9), 4595–4607 (2010)

    Article  MathSciNet  Google Scholar 

  18. Yin, W., Osher, S., Goldfarb, D., Darbon, J.: Bregman iterative algorithms for \(\ell _1\)-minimization with applications to compressed sensing. SIAM J. Imaging Sci. 1(1), 143–168 (2008)

    Article  MATH  Google Scholar 

  19. Zhang, H., Cheng, L., Zhu, W.: A lower bound guaranteeing exact matrix completion via singular value thresholding algorithm. Appl. Comput. Harmonic Anal. 31(3), 454–459 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Zhang, H., Cai, J.-F., Cheng, L., Zhu, J.: Strongly convex programming for exact matrix completion and robust principal component analysis. Inverse Probl. Imaging 6(2), 357–372 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. Zhang, H., Yin, W.: Gradient methods for convex minimization: better rates under weaker conditions. In: UCLA CAM Report (13–17), 2013

  22. Zhang, H., Cheng, L.Z., Yin, W.: Dual algorithm for a class of augmented convex signal recovery models. Commun. Math. Sci. 13(1), 103–112 (2015)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

We would like to thank Professor Wotao Yin (UCLA) for his comments and suggestion on numerical verification and Professor Jian-Feng Cai (Iowa U) for his insight of the projected shrinkage operator. We appreciate the constructive comments by anonymous reviewers, with which great improvements have been made in this manuscript. The work is supported by the National Science Foundation of China (Nos.11501569 and 61072118).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Cheng, L. Projected shrinkage algorithm for box-constrained \(\ell _1\)-minimization. Optim Lett 11, 55–70 (2017). https://doi.org/10.1007/s11590-015-0983-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11590-015-0983-3

Keywords

Navigation