Finding a maximum k-club using the k-clique formulation and canonical hypercube cuts

Original Paper

Abstract

Detecting low-diameter clusters is an important graph-based data mining technique used in social network analysis, bioinformatics and text-mining. Low pairwise distances within a cluster can facilitate fast communication or good reachability between vertices in the cluster. Formally, a subset of vertices that induce a subgraph of diameter at most k is called a k-club. For low values of the parameter k, this model offers a graph-theoretic relaxation of the clique model that formalizes the notion of a low-diameter cluster. Using a combination of graph decomposition and model decomposition techniques, we demonstrate how the fundamental optimization problem of finding a maximum size k-club can be solved optimally on large-scale benchmark instances that are available in the public domain. Our approach circumvents the use of complicated formulations of the maximum k-club problem in favor of a simple relaxation based on necessary conditions, combined with canonical hypercube cuts introduced by Balas and Jeroslow.

Keywords

k-club Clique Low-diameter clusters Lazy cuts 

References

  1. 1.
    Alba, R.D.: A graph-theoretic definition of a sociometric clique. J. Math. Sociol. 3(1), 113–126 (1973)MATHMathSciNetCrossRefGoogle Scholar
  2. 2.
    Almeida, M.T., Carvalho, F.D.: Integer models and upper bounds for the 3-club problem. Networks 60, 155–166 (2012)MATHMathSciNetCrossRefGoogle Scholar
  3. 3.
    Almeida, M.T., Carvalho, F.D.: An analytical comparison of the LP relaxations of integer models for the \(k\)-club problem. Eur. J. Oper. Res. 232(3), 489–498 (2014)MATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    Balas, E., Jeroslow, R.: Canonical cuts on the unit hypercube. SIAM J. Appl. Math. 23(1), 61–69 (1972)MATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    Balasundaram, B.: Graph theoretic generalizations of clique: optimization and extensions. PhD thesis, Texas A&M University, College Station, Texas, USA (2007)Google Scholar
  6. 6.
    Balasundaram, B., Mahdavi Pajouh, F.: Graph theoretic clique relaxations and applications. In: Pardalos, P.M., Du, D.Z., Graham, R. (eds.) Handbook of Combinatorial Optimization, 2nd edn, pp. 1559–1598. Springer, New York (2013)Google Scholar
  7. 7.
    Balasundaram, B., Butenko, S., Trukhanov, S.: Novel approaches for analyzing biological networks. J. Comb. Optim. 10(1), 23–39 (2005)MATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    Bourjolly, J.M., Laporte, G., Pesant, G.: Heuristics for finding \(k\)-clubs in an undirected graph. Comput. Oper. Res. 27, 559–569 (2000)MATHMathSciNetCrossRefGoogle Scholar
  9. 9.
    Bourjolly, J.M., Laporte, G., Pesant, G.: An exact algorithm for the maximum \(k\)-club problem in an undirected graph. Eur. J. Oper. Res. 138, 21–28 (2002)MATHMathSciNetCrossRefGoogle Scholar
  10. 10.
    Carvalho, F.D., Almeida, M.T.: Upper bounds and heuristics for the 2-club problem. Eur. J. Oper. Res. 210(3), 489–494 (2011)MATHMathSciNetCrossRefGoogle Scholar
  11. 11.
    Cook, D.J., Holder, L.B.: Graph-based data mining. IEEE Intell. Syst. 15(2), 32–41 (2000)CrossRefGoogle Scholar
  12. 12.
    Dimacs (2012) Graph partitioning and graph clustering: tenth Dimacs implementation challenge. http://www.cc.gatech.edu/dimacs10/index.shtml. Accessed Feb 2015
  13. 13.
    Gurobi Optimization, Inc (2014) Gurobi optimizer reference manual,version 6.0, copyright \(\copyright \) 2014. http://www.gurobi.com/documentation/6.0/refman/
  14. 14.
    Kahruman-Anderoglu, S., Buchanan, A., Butenko, S., Prokopyev, O.: On provably best construction heuristics for hard combinatorial optimization problems. Networks. (2015). doi:10.1002/net.21620
  15. 15.
    Miao, J., Berleant, D.: From paragraph networks to document networks. In: Proceedings of the International Conference on Information Technology: Coding and Computing, 2004 (ITCC 2004), vol. 1, pp 295–302 (2004). doi:10.1109/ITCC.2004.1286469
  16. 16.
    Mirghorbani, M., Krokhmal, P.: On finding \(k\)-cliques in \(k\)-partite graphs. Optimization Letters. 7(6), 1155–1165 (2013)Google Scholar
  17. 17.
    Mokken, R.J.: Cliques, clubs and clans. Qual. Quant. 13(2), 161–173 (1979)CrossRefGoogle Scholar
  18. 18.
    Pajouh, F.M., Balasundaram, B.: On inclusionwise maximal and maximum cardinality \(k\)-clubs in graphs. Discret. Optim. 9(2), 84–97 (2012)Google Scholar
  19. 19.
    Pajouh, F.M., Balasundaram, B., Hicks, I.V.: On the 2-club polytope of graphs (2015, under review)Google Scholar
  20. 20.
    Pattillo, J., Youssef, N., Butenko, S.: Clique relaxation models in social network analysis. In: Thai, M.T., Pardalos, P.M. (eds.) Handbook of Optimization in Complex Networks. Springer Optimization and Its Applications, vol. 58, pp 143–162. Springer, New York (2012)Google Scholar
  21. 21.
    Schäfer, A., Komusiewicz, C., Moser, H., Niedermeier, R.: Parameterized computational complexity of finding small-diameter subgraphs. Optim. Lett. 6(5), 883–891 (2012)MATHMathSciNetCrossRefGoogle Scholar
  22. 22.
    Shahinpour, S., Butenko, S.: Algorithms for the maximum \(k\)-club problem in graphs. J. Comb. Optim. 26(3), 520–554 (2013a)Google Scholar
  23. 23.
    Shahinpour, S., Butenko, S.: Distance-based clique relaxations in networks: \(s\)-clique and \(s\)-club. In: Goldengorin, B.I., Kalyagin, V.A., Pardalos, P.M. (eds.) Models, Algorithms, and Technologies for Network Analysis, vol. 59, pp 149–174. Springer New York (2013b)Google Scholar
  24. 24.
    Spirin, V., Mirny, L.A.: Protein complexes and functional modules in molecular networks. Proc. Natl. Acad. Sci. 100(21), 12123–12128 (2003)Google Scholar
  25. 25.
    Terveen, L., Hill, W., Amento, B.: Constructing, organizing, and visualizing collections of topically related, web resources. ACM Trans. Comput. Hum. Interact. 6, 67–94 (1999)CrossRefGoogle Scholar
  26. 26.
    Veremyev, A., Boginski, V.: Identifying large robust network clusters via new compact formulations of maximum \(k\)-club problems. Eur. J. Oper. Res. 218(2), 316–326 (2012)MATHMathSciNetCrossRefGoogle Scholar
  27. 27.
    Veremyev, A., Prokopyev, O.A., Pasiliao, E.L.: Critical nodes for distance-based connectivity and related problems in graphs. Networks 66(3), 170–195 (2015)Google Scholar
  28. 28.
    Wasserman, S., Faust, K.: Social Network Analysis. Cambridge University Press, New York (1994)CrossRefGoogle Scholar
  29. 29.
    Yannakakis, M.: Node-and edge-deletion NP-complete problems. In: Proceedings of the 10th Annual ACM Symposium on Theory of Computing, STOC ’78, pp. 253–264. ACM Press, New York (1978)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.School of Industrial Engineering and ManagementOklahoma State UniversityStillwaterUSA

Personalised recommendations