Skip to main content
Log in

A method to bypass the lack of solutions in MinSup problems under quasi-equilibrium constraints

  • Original Paper
  • Published:
Optimization Letters Aims and scope Submit manuscript

Abstract

MinSup problems with constraints described by quasi-equilibrium problems are considered in Banach spaces. The solutions set of such problems may be empty even in very good situations, so the aim of this paper is twofold. First, we determine appropriate regularizations (called inner regularizations) which allow to reach the value of the original problem. Then, among these regularizations we identify those which allow to bypass the lack of exact solutions to these problems by a suitable concept of “viscosity” solution whose existence is then proved under reasonable assumptions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Attouch, H.: Variational Convergence for Functions and Operators. Applicable Mathematics Series. Pitman, Advanced Publishing Program, Boston (1984)

    MATH  Google Scholar 

  2. Attouch, H.: Viscosity solutions of minimization problems. SIAM J. Optim. 6, 769–806 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  3. Attouch, H., Wets, R.J.: Convergence des points min/sup et de points fixes. C. R. Acad. Sci. Paris 296, 657–660 (1983)

    MathSciNet  Google Scholar 

  4. Aubin, J.P., Frankowska, A.: Set-valued Analysis. Birkhauser Boston, Boston (1990)

    MATH  Google Scholar 

  5. Baiocchi, C., Capelo, A.: Variational and Quasivariational Inequalities. Applications to Free Boundary Problems. Wiley, New-York (1984)

    MATH  Google Scholar 

  6. Blum, E., Oettli, W.: From optimization and variational inequalities to equilibrium problems. Math. Stud. 63, 123–145 (1994)

    MathSciNet  MATH  Google Scholar 

  7. Ceng, L.C., Hadjisavvas, N., Schaible, S., Yao, J.C.: Well-posedness for mixed quasivariational-like inequalities. J. Optim. Theory Appl. 139, 109–125 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Debreu, G.: A social equilibrium existence theorem. Proc. Nat. Acad. Sci. USA 38, 886–893 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dempe, S., Mordukhovich, B.S., Zemkoho, A.B.: Necessary optimality conditions in pessimistic bilevel programming. Optimization 63, 505–533 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. Fukushima, M., Pang, J.S.: Quasi-variational inequalities, generalized Nash equilibria, and multi-leader-follower games. Comput. Manag. Sci. 2(1), 21–56 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. Lignola, M.B., Morgan, J.: Topological existence and stability for MinSup problems. J. Math. Anal. Appl. 151, 164–180 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  12. Lignola, M.B., Morgan, J.: Semicontinuities of marginal functions in a sequential setting. Optimization 24, 241–252 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  13. Lignola, M.B., Morgan, J.: Topological existence and stability for Stackelberg problems. J. Optim. Theory Appl. 84, 145–169 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  14. Lignola, M.B., Morgan, J.: Convergence of solutions of quasi-variational inequalities and applications. Topol. Methods Nonlinear Analy. 10, 375–385 (1997)

    MathSciNet  MATH  Google Scholar 

  15. Lignola, M.B., Morgan, J.: Existence of solutions to generalized bilevel programming problem. In: Migdalas, A., Pardalos, P.M., Varbrand, P. (eds.) Multilevel Programming-Algorithms and Applications, pp. 315–332. Kluwer Academic Publishers, Berlin (1998)

    Chapter  Google Scholar 

  16. Lignola, M.B., Morgan, J.: Convergence results for weak efficiency in vector optimization problems with equilibrium constraints. J. Optim. Theory Appl. 133(1), 117–121 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lignola, M.B., Morgan, J.: Approximate values for mathematical programs with variational inequality constraints. Comput. Optim. Appl. 53(2), 485–503 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lignola, M.B., Morgan, J.: Stability in regularized quasi-variational settings. J. Convex Anal. 19(4), 1091–1107 (2012)

    MathSciNet  MATH  Google Scholar 

  19. Lignola, M.B., Morgan, J.: Asymptotic behavior of semi-quasivariational optimistic bilevel problems in Banach spaces. J. Math. Anal. Appl. 424(1), 1–20 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lignola, M.B., Morgan, J.: Viscosity solutions for bilevel problems with Nash equilibrium constraints. Far East J. Appl. Math. 88(1), 15–34 (2014)

    MATH  Google Scholar 

  21. Lignola M.B., Morgan J.: Asymptotic behavior of semi-quasivariational optimistic bilevel problems in Banach spaces. J. Math. Anal. Appl. 424(1), 1–20 (2015)

  22. Loridan, P., Morgan, J.: On Strict \(\varepsilon \)-Solutions for a two-level optimization problem. In: Feichtinger, G., Buhler, W., Radermacher, F.J., Stably, P. (eds.) Proceeding of the International Conference on Operation Research Vienna. Austria, 1990, pp. 165–172. Springer-Verlag, Berlin (1992)

  23. Loridan, P., Morgan, J.: New results on approximate solutions in two-level optimisation. Optimization 20, 819–836 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  24. Morgan, J.: Constrained well-Posed two-level optimization problems. In: Clarke, F., Demianov, V., Giannessi, F. (eds.) onsmooth Optimization and Related Topics. Ettore Majorana International Sciences Series, pp. 307–326. Plenum Press, New York (1989)

    Chapter  Google Scholar 

  25. Morgan, J., Raucci, R.: New convergence results for Nash equilibria. J. Conv. Anal. 6, 377–385 (1999)

    MathSciNet  MATH  Google Scholar 

  26. Morgan, J., Raucci, R.: Lower semicontinuity for approximate social Nash equilibria. Int. J. Game Theory 31, 499–509 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  27. Nash, J.F., Jr: Equilibrium points in \(n\)-person games. Proc. Nat. Acad. Sci. USA 36, 48–49 (1950)

  28. Noor, M.A., Oettli, W.: On general nonlinear complementarity problems and quasi-equilibria. Le Mathematiche 49, 313–331 (1994)

    MathSciNet  MATH  Google Scholar 

  29. Wiesemann, W., Tsoukalas, A., Kleniati, P.M., Rustem, B.: Pessimistic bilevel optimization. SIAM J. Optim. 23(1), 353–380 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacqueline Morgan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lignola, M.B., Morgan, J. A method to bypass the lack of solutions in MinSup problems under quasi-equilibrium constraints. Optim Lett 10, 833–846 (2016). https://doi.org/10.1007/s11590-015-0956-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11590-015-0956-6

Keywords

Navigation